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Abstract
Abuse of amphetamine-type stimulants (ATS) poses a significant public health concern with

known neurotoxic and neurocognitive effects to the user. In this chapter, we seek to integrate

the latest research on ATS, particularly methamphetamine, by covering areas of pharmacol-

ogy, neurocognitive effects, and the treatment of ATS use disorders with the goal of advancing

the clinical neuroscience of ATS and highlighting avenues for future research.

Keywords
Amphetamine, Stimulants, Methamphetamine, Addiction, Clinical neuroscience, Treatment,

ATS use disorders

1 INTRODUCTION
Amphetamine-type stimulants (ATS), including amphetamine, dextroamphetamine

(D-amphetamine), methamphetamine, and amphetamine-like drugs such as methyl-

phenidate, have a long history of use in the United States (U.S.) and continue to pose

a significant public health concern in the U.S. and worldwide. Synthetic amphet-

amine was first popularized in the U.S. in the 1930s as an over-the-counter nasal de-

congestant and was used to reduce fatigue and suppress appetite during World War

II. In the 1950s and 1960s, amphetamine was commonly prescribed as a medication

for depression and obesity, with approximately 31 million prescriptions filled in the

U.S. in 1967 (Anglin et al., 2000). Shortly thereafter, legislation was passed in

Progress in Brain Research, Volume 223, ISSN 0079-6123, http://dx.doi.org/10.1016/bs.pbr.2015.07.010

© 2016 Elsevier B.V. All rights reserved.
295

http://dx.doi.org/10.1016/bs.pbr.2015.07.010


attempt to restrict the availability of amphetamine, and medicinal use began to de-

cline (Gonzales et al., 2010); however, this reclassification of amphetamine to a more

restrictive schedule led to a surge in illicit manufacturing and use of methamphet-

amine. Furthermore, the relatively recent increase in attention deficit hyperactivity

disorder diagnoses has been accompanied by a resurgence of prescriptions for stim-

ulant medications with diversion of these medications a growing concern for the na-

tion (Rabiner, 2013). Despite multiple legislative attempts to limit public access,

illicit ATS use remains highly prevalent.

Currently, ATS are the second most commonly used class of illicit drugs world-

wide (UNODC, World Drug Report 2012); approximately 0.7% of the global pop-

ulation (33.8 million people) aged 15–64 years old reported using an ATS in 2010

(UNODC, World Drug Report 2013). In the U.S., estimates from 2013 suggest over

21.7 million people ages 12 years and older (8.3% of total responders) have used

ATS for nonmedical purposes in their lifetimes, 3.5 million people (1.3%) reported

past year use, and approximately 1.4 million (0.5%) of those identified as past month

users. Further, 12 million (4.7%) of the individuals surveyed reported lifetime use of

methamphetamine specifically, with approximately 440,000 (0.2%) of those identi-

fied as past month users (Substance Abuse and Mental Health Services

Administration (SAMHSA), 2013a). Importantly, these estimates appear to be grow-

ing both in terms of supply and demand (UNODC, 2013).

Subsequently, the prevalence of ATS use disorders is also on the rise. In 2012,

535,000 (0.2%) individuals were estimated to meet the Diagnostic and Statistical
Manual of Mental Disorders (4th ed., DSM–IV; American Psychiatric

Association, 1994) criteria of ATS abuse or dependence, a significant increase from

the 329,000 (0.1%) in 2011 (SAMHSA, 2013a). This increase was especially pro-

nounced among individuals aged 18–25 years, with 0.5% meeting criteria in

2012, up from 0.3% in 2011. Furthermore, primary methamphetamine/amphetamine

treatment admissions were more likely than all drug treatment admissions combined

to receive long-term rehabilitation/residential treatment (16% vs. 7%) (SAMHSA,

2013b), suggestive of the exceedingly high costs associated with the treatment of

ATS use disorders and underscoring the need for more efficacious, cost effective,

and easily deliverable treatments.

Developing a greater understanding of the clinical neuroscience underlying the

consequences of ATS use is an important step toward the development of more ef-

ficacious treatments for ATS use disorders. This is especially important with respect

to medications development given the lack of any current FDA-approved medica-

tions for ATS dependence. Significant advances in preclinical and clinical research

have begun to identify the neurochemical pathways affected by ATS use and high-

light potential targets for intervention. Thus, knowledge of the pharmacological and

neurological adaptations associated with ATS use could lead to the development of

more efficacious medications and further inform psychosocial interventions for ATS

use disorders (Table 1).

Given that methamphetamine is the most frequently used ATS worldwide

(UNODC, 2013), and that studies of neurodegeneration, neurocognitive functioning,
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and treatment most commonly target methamphetamine using populations, the ma-

jority of this chapter presents the current understanding of the clinical neuroscience

behind methamphetamine use and associated disorders, expanded to ATS more

broadly where applicable.

2 PHARMACOLOGY AND NEUROTOXICITY
As with most ATS, methamphetamine stimulates the release, and partially blocks the

reuptake, of newly synthesized catecholamines in the CNS (Cho and Melega, 2002).

Due to its structural similarity, methamphetamine interacts with the dopamine trans-

porter (DAT), noradrenaline transporter (NET), serotonin transporter (SERT), and

vesicular monoamine transporter-2 (VMAT-2) and reverses their endogenous func-

tion, thereby redistributing monoamines from storage vesicles into the cytosol. This

process results in the release of dopamine, noradrenaline, and serotonin into the syn-

apse, which then stimulate postsynaptic monoamine receptors (Cruickshank and

Dyer, 2009). Methamphetamine also attenuates the metabolism of monoamines

by inhibiting monoamine oxidase (Sulzer et al., 2005), further enabling the buildup

of excess monoamines in the synapse.

The monoamines released due to the presence of ATS act on the major noradren-

ergic, serotonergic, and dopaminergic pathways of the brain. The medial basal fore-

brain, the hippocampus, as well as the prefrontal cortex (PFC) represent

noradrenergic regions of interest for ATS effects, with various affected functions re-

lated to arousal, memory consolidation, and cognitive processing, respectively

(Berridge and Waterhouse, 2003). Affected serotonergic neurons are dispersed

throughout the brain, regulating diverse functions such as respiration, pain percep-

tion, sexual drive, reward, and higher-order cognitive processing (Hornung, 2003).

In the case of dopamine, methamphetamine activates the mesolimbic, mesocortical

circuit, and the nigrostriatal pathways, which have been related to the euphoric ef-

fects observed immediately after the ingestion of the drug (Homer et al., 2008).

Table 1 Chapter Highlights

• Amphetamine-type stimulants (ATS) are the second most commonly used class of illicit
drugs worldwide and the prevalence of ATS use disorders are on the rise

• ATS have pervasive, and potentially long-lasting effects on the dopaminergic,
noradrenergic, serotonergic, and opioidergic neurotransmitter systems throughout the
brain and can result in detrimental effects to cognitive processes in heavy users

• More efficacious treatment options, such as FDA-approved pharmacotherapies, are
greatly needed for ATS use disorders

• Promisingmedications currently under study for the treatment of ATS use disorders include
oxytocin, bupropion, mirtazapine, topiramate, modafinil, and naltrexone

• The integration of basic neuroscience and treatment development research could improve
clinical outcomes in ATS use disorders by facilitating targeted treatment approaches
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Although no differences in striatal dopamine release between amphetamine and

methamphetamine are observed (Melega et al., 1995), amphetamine is thought to

result in a slightly greater dopamine release in the PFC, which may be responsible

for the subtle differences between these drugs on behavioral tolerance and working

memory measures (Shoblock et al., 2003a,b).

Repeated exposure to moderate to high levels of methamphetamine has been re-

lated to neurotoxic effects on the dopaminergic and serotonergic systems, leading to

potentially irreversible loss of nerve terminals and/or neuron cell bodies (Cho and

Melega, 2002). Preclinical evidence suggests that D-amphetamine, even when ad-

ministered at commonly prescribed therapeutic doses, also results in toxicity to brain

dopaminergic axon terminals (Ricaurte et al., 2005). Although the precise mecha-

nisms remain unclear, the culmination of evidence suggests that the high level of

cytoplasmic dopamine released as a result of ATS use leads to the accumulation

of reactive oxygen species and severe oxidative stress on the neuron (Berman

et al., 2008). Furthermore, frequent use of methamphetamine has been associated

with reductions in striatal D2-receptor availability (Groman et al., 2012; Volkow

et al., 2001a), VMAT-2 density ( Johanson et al., 2006), SERT density (Sekine

et al., 2006), and DAT site density (McCann et al., 1998; Villemagne et al., 1998;

Volkow et al., 2001b,c), with some markers (i.e., DAT density) showing improve-

ment following prolonged (greater than 12 months) abstinence (Volkow et al.,

2001b). Reduced markers of neuronal integrity and increased markers of glial con-

tent are also observed in chronic methamphetamine abusers, possibly indicating

the proliferation of glial cells following neural damage (Chang et al., 2007; Ernst

et al., 2000).

The potentiation of dopaminergic neurotransmission within the mesocorticolim-

bic circuit is thought to underlie the reinforcing properties of drugs of abuse, al-

though evidence is accumulating on a converging role of the endogenous opioid

systems in the establishment of reinforcement (Boutrel, 2008). In terms of neuroanat-

omy, endogenous opioid receptors are widely distributed throughout the CNS, with

differential distributions per opioid receptor type. Importantly, opioid receptors and

peptides are highly expressed in brain areas involved in reward and motivation, such

as the ventral tegmental area (VTA) and nucleus accumbens (NAcc) (Mansour et al.,

1995). Administration of classical exogenous opioids facilitates dopamine release in

the mesolimbic reward system by activating m- and d-opioid receptors in the NAcc

(Hirose et al., 2005; Murakawa et al., 2004) and by decreasing GABA-inhibition via

m- and k-opioid receptors, which are mainly located on GABA interneurons in the

VTA (Bonci andWilliams, 1997; Shoji et al., 1999). Many nonopioid drugs of abuse,

including ATS, are also known to interact with the endogenous opioid system (for a

review, see Trigo et al., 2010), and this interaction may mediate some of the reward-

ing properties associated with acute ATS use (Boutrel, 2008). For example, acute

amphetamine administration has been linked with increased b-endorphin levels in

the NAcc (Olive et al., 2001), increased striatonigral dynorphin-like immunoreactiv-

ity (Bustamante et al., 2002; Hanson et al., 1988), and changes in the endogenous

opioid mRNA expression in the striatum (Hurd and Herkenham, 1992; Smith and
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McGinty, 1994; Wang and McGinty, 1995). Further, preclinical data suggest that the

endogenous opioid system is involved in the induction and expression of

methamphetamine-induced behavioral (locomotor) sensitization (Chiu et al.,

2006), analogous to compulsive drug-seeking behavior in humans (i.e., drug craving;

Itzhak and Ali, 2002), through its modulatory actions of the mesolimbic dopamine

system (Ford et al., 2006).

In summary, methamphetamine and other ATS have pervasive and potentially

long-lasting effects not only on the dopaminergic system but also on noradrenergic,

serotonergic, and opioidergic neurotransmitter systems throughout the brain. It is

through the culmination of these complex neurochemical modulations that signifi-

cant behavioral and cognitive changes result.

3 NEUROCOGNITIVE EFFECTS
Many ATS are used therapeutically to improve attention and cognition; however, a

review of the literature suggests dosage, and route of administration is a key deter-

minant of the cognitive effects of these drugs (see Wood et al., 2014). Wood et al.

(2014) argue that cognitive effects of ATS, including prescription medications such

as D-amphetamine and methylphenidate, follow an inverted U dose–response curve,

such that high doses result in detrimental effects on cognitive processing in domains

such as learning and memory. In fact, a recent study of frequent recreational users of

D-amphetamine observed impairments in performance on executive functioning and

memory consolidation tasks, in addition to a trend toward reduced striatal DAT site

binding and a blunted hemodynamic response to methylphenidate challenge, when

compared to healthy controls (Schouw et al., 2013).

Chronic methamphetamine use, more specifically, has been associated with al-

terations across a broad spectrum of neurocognitive processes, although differenti-

ating preexisting deficits from methamphetamine-induced cognitive deficits poses

significant challenges (Dean et al., 2013), and concerns regarding the interpretation

of these discrepancies and their clinical significance have been raised (Hart et al.,

2012). The culmination of evidence acquired through various methodologies (e.g.,

preclinical, cross-sectional human, and brain imaging studies), however, supports

the assertion that methamphetamine abuse does indeed cause cognitive decline in

at least some individuals (i.e., individuals at the age of early-to-middle adulthood),

and that individual difference factors such as education level and genotype further

moderate this relationship (Dean et al., 2013). Cognitive domains including episodic

memory, complex information processing speed, executive functions (e.g., response

inhibition, novel problem solving), and psychomotor functions appear to be most af-

fected in individuals with methamphetamine use disorders, with smaller, yet signif-

icant, effects also observed onmeasures of attention/workingmemory, language, and

visuoconstruction (Scott et al., 2007).

A number of these cognitive discrepancies and other behavioral changes associ-

ated with methamphetamine abuse have been related to methamphetamine-induced
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alterations in neurotransmission, such as memory deficits and impaired psychomotor

coordination associated with reduced DAT site density (Volkow et al., 2001c), and

increased aggression associated with reduced SERT density (Sekine et al., 2006).

Further, preclinical evidence suggests D2-specific alterations of the dopaminergic

system may subserve some of the disturbances in learning observed with repeated

methamphetamine use. Specifically, using a reversal learning task and PET in a pre-

clinical sample of vervet monkeys given a chronic, escalating-dose regimen of meth-

amphetamine revealed associations between the change in response to positive

feedback and individual differences in the change in dopamine D2-like receptor

availability in the striatum, assessed pre- and postmethamphetamine regimen

(Groman et al., 2012).

Functional neuroimaging procedures have begun to identify region-specific alter-

ations in glucose metabolism and blood-oxygen-level-dependent measures of brain

activation associated with these potentially affected cognitive processes. For exam-

ple, glucose metabolism in the anterior and middle cingulate gyrus and the insula

was negatively correlated with error rates on an auditory vigilance task indexing

attentional processing in recently abstinent (4–7 days) methamphetamine abusers

(London et al., 2005). Evidence also suggests frontal and insular involvement in

learning and cognitive control changes associated with methamphetamine abuse.

On a color-word Stroop task administered during functional magnetic resonance im-

aging, methamphetamine abusers display reduced reaction time (RT) adjustments

and reduced PFC activity following conflict (i.e., incongruent) trials (Salo et al.,

2009, 2013), and reduced RT, increased error rate, and reduced activation of the right

inferior frontal gyrus (IFG), supplementary motor cortex/anterior cingulate gyrus,

and the anterior insular cortex during the incongruent condition (Nestor et al., 2011).

Region-specific alterations in brain activation have also been observed on decision-

making tasks in methamphetamine abusers. Methamphetamine abusers displayed re-

duced activation in the right IFG and the left medial frontal gyrus during a two-choice

prediction task (where only 50% of the responses are reinforcedwith a correct response

outcome), and a decrease in dorsolateral PFC (dlPFC) and right orbitofrontal cortex

(OFC) activity in the active compared to control conditions, as opposed to the increase

of activation in these areas observed in the healthy controls (Paulus et al., 2002). In a

follow-up study using the same task, recently abstinent (average 25 days) individuals

with methamphetamine dependence displayed reduced activation of the OFC, dlPFC,

anterior cingulate cortex (ACC), and parietal cortex irrespective of the outcome, and

attenuation of specific “success-related” patterns of brain activation as compared to

healthy controls (Paulus et al., 2003). Furthermore, the degree of activation in the right

middle frontal gyrus, middle temporal gyrus, and posterior cingulate during the two-

choice prediction task in early remission (3–4 weeks abstinent) was predictive of re-

lapse during a 1-year follow-up (Paulus et al., 2005).

On a temporal discounting task indexing reward-related decision-making, con-

trasting “hard choices,” where roughly equivalent preference is obtained for the im-

mediate and delayed reward choices, and “easy choices,” in which the choices differ

dramatically in value and preference, revealed less activation in the precuneus, right
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caudate nucleus, ACC, and dlPFC in recently abstinent (2–8 weeks) individuals with

methamphetamine dependence (Hoffman et al., 2008), and less activation of the left

dlPFC and right intraparietal sulcus in active methamphetamine abusers

(Monterosso et al., 2007), as compared to healthy controls. Furthermore,

methamphetamine-dependent individuals undergoing treatment display disrupted

risk-related processing, a component of decision-making, on the Risky Gains Task

in both the ACC and insula (Gowin et al., 2013).

In summary, ATS abuse is associated with specific task-related behavioral and

neural processing differences across a number of cognitive domains, which appear

to be moderated by dose, route of administration, and other individual difference var-

iables. Importantly, evidence is accumulating to suggest some of these differences

are associated with altered dopaminergic processing (Groman et al., 2012) and clin-

ically meaningful outcomes (Paulus et al., 2005), suggestive of a functional role for

these cognitive differences in the development and maintenance of methamphet-

amine addiction.

4 TREATMENT
At present, few effective options exist for individuals seeking treatment for ATS use

disorders, and to date, these options have been limited to psychosocial interventions.

A systematic review of cognitive and behavioral treatments as applied specifically to

methamphetamine use disorders concluded that good clinical outcomes are achieved

with cognitive behavioral treatment (CBT; with and without motivational interview-

ing [MI]) and contingency management (CM) therapies involving the systematic use

of reinforcement (Lee and Rawson, 2008). A number of caveats must be considered

when interpreting these conclusions, however, such as the durability of treatment ef-

fects (especially with respect to CM programs). Furthermore, the effectiveness of

psychosocial interventions is compromised by poor rates of treatment induction

and retention (Shearer, 2007), and methamphetamine-related cognitive deficits in

executive functioning, particularly those related to inhibitory control, have been hy-

pothesized to potentially render heavily cognitive-based treatments ineffective

(Baicy and London, 2007).

Given these important caveats of psychosocial interventions, and the heavy focus

on the neurobiology of methamphetamine dependence, attention has shifted to the

development of efficacious pharmacotherapies for methamphetamine addiction

(NIDA, 2005). At present, no medication is approved by the U.S. Food and Drug

Administration (FDA) for use in ATS use disorders. Numerous classes of medica-

tions are currently under study for methamphetamine use disorders, primarily in

small clinical trials (for a recent focused review, see Brensilver et al., 2013). Some

of the most promising medications include bupropion, mirtazapine, topiramate,

modafinil, and naltrexone.

Bupropion, commonly prescribed as an antidepressant or smoking-cessation

agent, is known to affect several biological targets. Widely described as a dopamine
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and norepinephrine reuptake inhibitor (Stahl et al., 2004), bupropion also acts as a

noncompetitive antagonist of several neuronal nicotinic acetylcholine (nACh) recep-

tors (Slemmer et al., 2000). Clinical use of bupropion has been associated with re-

duced use of methamphetamine among baseline light, but not heavy,

methamphetamine users (identified in a post hoc analysis; Shoptaw et al., 2008);

however, its precise mechanism of action remains unclear.

In a 12-week trial, mirtazapine, a noradrenergic and specific serotonergic antide-

pressant, combined with CBT/MI counseling has also been associated with signifi-

cant reductions in methamphetamine use (percent positive urines at the week

12 visit) in a sample of methamphetamine-dependent men who have sex with

men (Colfax et al., 2011). The clinical efficacy of this agent may be related to its

ability to enhance of the release of norepinephrine and 5-HT1A-mediated serotoner-

gic transmission (Anttila and Leinonen, 2001).

Topiramate, a sulfamate fructopyranose derivative and anticonvulsant, has been

associated with reductions in methamphetamine use in large multisite clinical trial;

however, no effects on total abstinence (negative urines during 6–12-week follow-

up) were observed (Elkashef et al., 2012). Further analysis of this data identified a

small subgroup of patients who exhibited consistent reductions of use or achieved

abstinence during follow-up which were associated with topiramate treatment. This

subgroup consisted of individuals who were more likely to have discontinued meth-

amphetamine use (i.e., have a negative last urine) during the week prior to random-

ization (Ma et al., 2013) suggesting that topiramate may function best for relapse

prevention. GABAergic modulation may be one possible mechanism underlying

the potential efficacy of topiramate for methamphetamine treatment. Topiramate

is known to facilitate GABAergic function via enhancement of inhibitory

GABAA-mediated currents at nonbenzodiazepine sites on the GABAA receptor

(White et al., 2000). Topiramate also antagonizes glutaminergic activity through

an effect at kainate/alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid re-

ceptors (Gryder and Rogawski, 2003). Through these processes, topiramate is

thought to modulate cortico-mesolimbic dopaminergic activity ( Johnson, 2004), po-

tentially stabilizing this activity and subsequently helping to prevent relapse or re-

duce methamphetamine use.

Cognitive-enhancing medications such as modafinil, an analeptic drug with

known cognitive-enhancing properties, have garnered recent attention given the

known cognitive deficits associated with chronic methamphetamine use (e.g.,

Ghahremani et al., 2011). Modafinil combined with CBT was associated with re-

duced methamphetamine use within a small sample of HIV+ gay men dependent

on methamphetamine (McElhiney et al., 2009), although recent trials have not found

strong support for a direct effect of modafinil on abstinence outcomes (e.g.,

Anderson et al., 2012; Heinzerling et al., 2010). The mechanism of action of mod-

afinil is complex, involving multiple neurotransmitter systems, but its potential ef-

fects on ATS use may be related to inhibition of catecholamine transporters (Madras

et al., 2006; Volkow et al., 2009), thereby increasing extracellular dopamine and nor-

epinephrine levels.

302 CHAPTER 15 ATS clinical neuroscience



Lastly, naltrexone, an opioid antagonist with greatest affinity for the m- and

k-opioid receptors in humans (Emmerson et al., 1994; Toll et al., 1998), has been

associated with reduced amphetamine use and greater abstinence rates in a sample

of amphetamine-dependent individuals ( Jayaram-Lindstrom et al., 2008). Further,

amphetamine dependent patients with high levels of naltrexone (�2 ng/ml) in their

blood were 2.27 times more likely to be abstinent than patients with low naltrexone

blood levels (<2 ng/ml; Grant et al., 2010). Naltrexone-related reductions of cue-

induced craving and subjective responses to methamphetamine administration have

recently been observed in nontreatment seeking individuals with methamphetamine

use disorders (Ray et al., 2015), advancing naltrexone as a potential treatment for

methamphetamine addiction as well. The blockage of ATS-induced dopamine re-

lease in the mesolimbic dopamine system has been proposed as the neural mecha-

nism underlying naltrexone’s effects on craving and subjective reward

(Ashenhurst et al., 2012; Benjamin et al., 1993; Jayaram-Lindstrom et al., 2004;

Lee et al., 2005; Naleid et al., 2005; Widdowson and Holman, 1992) which may un-

derlie the observed attenuation of ATS use.

In summary, the clinically limiting caveats of psychosocial treatments have en-

gendered a strong interest in medication development for the treatment of ATS use

disorders. A number of medications are currently under study in clinical research for

the treatment of ATS use disorders, many with promising preliminary results. Pre-

clinical research is also continuously advancing novel pharmacological agents that

may progress to human trials for ATS use disorders. For example, oxytocin, a mam-

malian neuropeptide, has shown promise in reducing responding for intravenous

methamphetamine in rodent models (Carson et al., 2010; Cox et al., 2013), which

may one day translate to improved clinical outcomes associated with oxytocin

treatment in humans. Treatment development for ATS use disorders has been a

challenging enterprise, yet consistent with the addiction field broadly (Litten

et al., 2012), efforts to refocus the field toward medications with novel therapeutic

targets (e.g., the opioidergic system, cognitive enhancement) hold considerable

promise for these complex disorders.

5 CONCLUSION AND FUTURE DIRECTIONS
Illicit ATS use continues to be highly prevalent despite numerous attempts to limit

public access to the drugs and their precursors. Methamphetamine in particular is the

most frequently used ATS worldwide and has the highest abuse potential, yet the

diversion of stimulant medications is also a growing concern. Through actions on

the brain’s major dopaminergic, noradrenergic, serotonergic, and opioidergic path-

ways, repeated use of ATS (especially methamphetamine) is associated with signif-

icant neurotoxic effects and neurocognitive deficits, with only a few of such effects

known to remediate following sustained abstinence. Thus, early identification of

problematic ATS use and effective treatment implementation is critical to successful

outcomes.
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Advances in the identification of the neural pathways affected by ATS use have

begun to highlight potential targets for intervention. The development of efficacious

pharmacologic interventions is most promising in this regard, particularly given the

profound neurochemical alterations associated with ATS use. Medications that act

on the dopaminergic, GABAergic, and serotonergic systems have shown promise

in reducing ATS use in clinical samples, and increasing evidence for the opioidergic

system’s role in the development of ATS use disorders has advanced pharmacologic

agents targeting this pathway as plausible treatments.

By integrating basic neuroscience into treatment development research, one may

elucidate how psychosocial and pharmacological interventions function to reduce

ATS use and for whom specific interventions may be most efficacious. For example,

the most effective medications may function via novel mechanisms such as enhanc-

ing the effectiveness of existent psychosocial interventions (e.g., via decreasing cog-

nitive impairment) and by targeting intermediate phenotypes of addiction (e.g.,

relapse prevention/craving) (NIDA, 2005). Further, current research suggests that

clinical outcomes may be improved by tailoring interventions to differences in pa-

tient presentation (e.g., heaviness of use, age of user, cognitive capability), some of

which effects may be driven by individual differences in dopaminergic processing.

Clinical neuroscience research is well positioned to address these questions and ul-

timately provide relief to thousands of individuals currently struggling to overcome

their addiction to these stimulating and reinforcing drugs.
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