

REVIFW

Expert Review of Precision Medicine and Drug **Development**

Personalized medicine in drug development and clinical practice

ISSN: (Print) 2380-8993 (Online) Journal homepage: https://www.tandfonline.com/loi/tepm20

On the path toward personalized medicine: implications of pharmacogenetic studies of alcohol use disorder medications

Steven J. Nieto, Erica N. Grodin & Lara A. Ray

To cite this article: Steven J. Nieto, Erica N. Grodin & Lara A. Ray (2020) On the path toward personalized medicine: implications of pharmacogenetic studies of alcohol use disorder medications, Expert Review of Precision Medicine and Drug Development, 5:1, 43-54, DOI: 10.1080/23808993.2020.1724510

To link to this article: <u>https://doi.org/10.1080/23808993.2020.1724510</u>

Accepted author version posted online: 29 Jan 2020. Published online: 10 Feb 2020.

🕼 Submit your article to this journal 🗗

Article views: 31

View related articles

View Crossmark data 🗹

REVIEW

Check for updates

Tavlor & Francis

Taylor & Francis Group

On the path toward personalized medicine: implications of pharmacogenetic studies of alcohol use disorder medications

Steven J. Nieto^a, Erica N. Grodin^a and Lara A. Ray^{a,b,c}

^aDepartment of Psychology, University of California Los Angeles, Los Angeles, CA, USA; ^bDepartment of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; ^cBrain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA

ABSTRACT

Introduction: The heritability of alcohol use disorder (AUD) is estimated to be ~50%; however, the genetic basis of the disease is still poorly understood. The genetic variants identified thus far only explain a small percentage of AUD phenotypic variability. While genome-wide association studies (GWAS) are impacted by technical and methodological limitations, genetic variants that have been identified independently of GWAS findings can moderate the efficacy of AUD medications.

Areas covered: This review discusses findings from clinical pharmacogenetic studies of AUD medications. While the pharmacogenetic studies reviewed involve several genetic variants in the major neurotransmitter systems, genetic loci in the opioid system have garnered the most attention.

Expert opinion: The clinical utility of pharmacogenetics in AUD populations is uncertain at this time. There are several ongoing prospective clinical trials that will enhance knowledge regarding the applicability of pharmacogenetics in clinical populations. We recommend that future work in this area considers reverse translating from genotype to phenotype, mapping genes to stages of the addiction cycle, mapping genes to neural circuits, and harnessing large population-based cohorts.

ARTICLE HISTORY

Received 2 July 2019 Accepted 29 January 2020

KEYWORDS

Alcohol; pharmacogenetics; precision medicine; drug development; alcohol use disorder

1. Introduction

Alcohol use disorder (AUD) is a chronic relapsing condition that is diagnosed when individuals present with at least two of eleven criteria related to tolerance to the subjective effects of alcohol, alcohol withdrawal symptoms, impaired control over alcohol use, alcohol craving, and impairments in psychosocial domains [1]. According to the 2015 National Survey on Drug Use and Health, 15.1 million adults in the United States had an AUD diagnosis [2]. In addition, alcohol use is the third leading preventable factor contributing to death in the U.S [3], with an estimated economic cost of ~\$249 billion [4]. Although pathological alcohol consumption incurs substantial individual and societal costs, only a small subset (~10%) of people with AUD are treated [2].

Despite the high prevalence of AUD in the United States, there are only three FDA-approved pharmacological treatments for AUD. Disulfiram is the oldest medication for AUD, approved by the FDA in 1948 [5]. Its mechanism of action involves inhibition of aldehyde dehydrogenase, the enzyme responsible for converting acetaldehyde to acetate during alcohol metabolism, which leads to the accumulation of acetaldehyde after alcohol intake [6]. Elevated levels of acetaldehyde cause an aversive reaction deterring further alcohol use [7]. Acamprosate shares similarities with several amino acids, such as glutamate, GABA, aspartate, glycine, and taurine [8]. Acamprosate may normalize a hyper-glutamatergic state caused by extensive alcohol use and repeated phases of alcohol withdrawal, restoring the balance between inhibitory and excitatory neurotransmitters, and thus, attenuating alcohol craving [9]. However, acamprosate's exact mechanism of action is still unknown. Lastly, naltrexone (NTX) is available in both oral or extended-release injectable formulations. NTX is believed to inhibit alcohol-induced dopamine release in the nucleus accumbens, a key structure in the brain's reward system, with its behavioral effects being reduced subjective reward after drinking [10]. Unfortunately, medications for AUD show modest efficacy at best [5] with relapse rates ~50% 3 years after treatment onset [11,12]. Given that AUD is a heterogenous and complex syndrome, the one size fits all approach to treatment has had little success for this disorder relative to other medical conditions. Furthermore, medications development for AUD is marked by a host of challenges across the development spectrum, from preclinical studies to clinical trials [13]. Thus, it is important to identify individual factors that can improve the efficacy of treatments currently available and under investigation.

The role of genetics in AUD was founded on many years of observations that pathological alcohol consumption is clustered in families. Twin and adoption studies consistently find that the heritability of AUD is between 50% and 60% [14]; thus, transmission of risk alleles independent of environment may contribute to AUD etiology. While family, twin, and adoption studies provide initial evidence of an inherited risk of AUD, they cannot conclusively determine the role of genes in disease states. To address this issue, genetic linkage studies

CONTACT Lara A. Ray 🖾 lararay@psych.ucla.edu 🖃 Psychology Department, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA

use a family-based method to evaluate whether one or more genetic markers spaced across the 23 chromosomes cosegregate with a disorder. The Collaborative Study on the Genetics of Alcoholism (COGA) was one of the first studies to utilize this novel genome-wide scan to map and characterize genetic variants that contribute to AUD [15]. With over nine research sites and an initial sample of 105 families and 987 individuals, COGA found that loci located on chromosomes 1, 7, and 3 linked with AUD, while different loci on chromosome 2 both linked with and were protective of AUD [16]. There are several limitations to linkage studies. For instance, these studies are labor-intensive because they require compilation of extended pedigrees. In addition, linkage studies offer poor genomic resolution because large chromosomal regions identified can contain several possible candidate genes.

Another approach involves genetic association in family-based and population samples. Compared to linkage designs, association studies are allele-based rather than locus-based. Association studies identify alleles of a gene that are more common in a person with a disease versus those without. COGA has conducted several candidate gene studies which have identified more than a dozen genes that associate with AUD and certain endophenotypes [17,18]. Risk alleles that contribute to AUD vulnerability involve major neurotransmitter systems, alcohol metabolism, neuropeptide signaling, neuroendocrine signaling, other signaling molecules, and cellular architecture [17,19]. Interestingly, the most replicable findings have been genetic variations in alcohol-metabolizing genes and protective effects on risk for AUD, especially in Asian populations. Importantly, these studies require a biologically relevant candidate gene or pathway to test for association with AUD. Because a priori knowledge is required, this limits the potential of finding novel and unexpected genetic associations. Overall, candidate gene association studies explain a small percentage of genetic variance and their lack of utility was recently underscored in [20].

Genome-wide studies (GWAS) association represent a discovery-based approach wherein an array of common singlenucleotide polymorphisms (SNPs) is examined across the entire genome without a priori hypothesis about a specific gene or pathway. Over the last several years, GWAS studies have found that variation in the genes encoding the alcohol-metabolizing enzymes is among the common variants with the largest effect on AUD risk [14]. Table 1 provides a review of prominent GWAS of AUD completed across racially and ethnically diverse populations. As can be seen in Table 1, sample sizes increase with recency of publication and the associations found in the alcoholmetabolizing enzyme genes represent the most consistent overall findings for GWAS of AUD to date [21], replicating findings from candidate gene and linkage studies. However, these results were somewhat discouraging because it was expected that GWAS would identify novel and unexpected variants that would enhance our understanding of the genetics of complex traits including AUD. Large sample sizes are required to achieve statistical power to detect small effects, especially for complex diseases, such as psychiatric disorders. In addition, very conservative statistical corrections are required to control for multiple testing of the more than 1 million SNPs that are investigated in a single GWAS. A Bonferroni-corrected genome-wide significance threshold set at $p < 10^{-8}$ is typically required. Furthermore, the heritability

explained by SNP associations is less than estimates of heritability derived from family studies. The variants that reach statistical significance typically explain only a small fraction of the heritability, a phenomenon commonly referred to as 'missing heritability' [22]. Several hypotheses have been put forward to explain missing heritability, such as undetected rare variants of large effect, epistatic interactions, and the notion that heritability estimates from family studies may be overinflated [23–26].

It is well established that AUD risk is the result of multiple genes, environmental factors, and interactions across genes and gene x environment. To account for multiple genetic markers simultaneously, polygenic risk scores can be estimated from GWAS data and provide a quantitative measure of the cumulative effects of common genetic variance across the entire genome on risk for a disorder. Risk scores are calculated as a weighted sum of the number of risk alleles at the selected SNPs carried by a person. The weight is obtained from the effect size associated with the SNPs. These scores can be compared between persons and phenotypes. Polygenic risk scores have had some success in predicting AUD risk in individuals [27]; however, a recent genome-wide meta-analysis of AUD showed that these scores only explained between 0.3% and 1.7% of the variance in alcohol use and misuse phenotypes [28].

The GWAS approach is beginning to uncover novel biology contributing to the risk of AUD but will require larger samples and independent replication. Importantly, recent GWAS and meta-analytic studies find that the genetic underpinnings of AUD are distinct from alcohol consumption [29,30]. While an indepth analysis of findings from GWAS of AUD and alcohol behaviors is beyond the scope of this review, the reader is referred to excellent reviews on the topic [31-33]. A comprehensive understanding of the genetic contribution of AUD may reveal potential targets for new pharmacotherapies as well as opening avenues for personalized medicine. The purpose of this qualitative review is to synthesize the findings of several studies that have examined genetic biomarkers in the context of pharmacotherapies for the treatment of AUD. Relevant published papers were identified using the PubMed database with the following keywords: 'pharmacogenetics, alcohol, and clinical trial.' The reference section of some papers was also used to identify pertinent papers. Studies were included if they assessed the moderating effects of genotypes on medication efficacy in the context of randomized clinical trials. Human laboratory studies were also included to provide background information where appropriate. Given the large correspondence between the DSM-IV diagnosis of alcohol dependence and DSM-5 moderate and severe diagnoses of AUD [34], we use the term AUD as a proxy for alcohol dependence detected using previous editions of the DSM. Future directions for pharmacogenetics of AUD are also discussed.

2. Pharmacogenetic studies of AUD medications

2.1. Pharmacogenetic studies involving the endogenous opioid system

Most clinical pharmacogenetic studies of AUD have focused on genetic variants in the endogenous opioid system, specifically postsynaptic receptors. Opioid ligands and receptors are widely dispersed throughout the central nervous system. As

Table	1. Findings	from	aenome-wide	association	studies	of AUD
			J · · · · · ·			

Decknown Sample Case-control status Prof. Heritaging Case-control status Prof. Second	Discovery Sample		SNPs identified ($P < 5 \times 10^{-8}$)	Poforonco
German sample (men) Case-control status rst390/20.8 ct3344894 (P4:01) (Findlem et al., 2000) SAGE sample. Case-control status None (Biend et al., 2010) SAGE sample. Case-control status None (Biend et al., 2010) SAGE sample. Case-control status None (Edenberg et al., 2010) SAGE sample. Case-control status None (Edenberg et al., 2011) SAGE sample. Case-control status None (Edenberg et al., 2011) SAGE sample. Case-control status None (Edenberg et al., 2011) SAGE sample. Citerion factor score None (Heath et al., 2001) SAGE sample. Citerion factor score nander status nander status SAGE sample. (1) Case-control status nander status nander status SAGE sample. (2) Quantitable factor score nander status nander status SAGE sample. (2) Quantitable factor score nander status nander status SAGE sample. (2) Quantitable factor score nander status nander status SAGE sample. Case		AOD Fliellotype		
1,044 consis 1,044 consis 1,045 1,235 Exactorize Case-control status None (Bienut et al, 2010) 1,235 Ex And cases 1,235 Ex And cases 1,201 (Add cases) 1,201 (Add cases) 627 A AD cases Constantial None (Edenberg et al.,2010) 1,235 Ex And cases Constantial 1,201 (Add cases) 1,201 (Add cases) 200 AD cases Case-control status None (Edenberg et al.,2011) 201 AD cases 11 (Case-control status None (Rendier et al., 2011) 202 AD cases 12 (Case-control status None (Rendier et al., 2011) 203 AD cases 13 Quentitative feasories core rs1789891 (ADH1C) (Frant et al., 2012) 1,338 controls 13 Quentitative feasories core rs1789891 (ADH1C) (Frant et al., 2012) 1,338 controls 13 Quentitative feasories core rs1789891 (ADH1C) (Frant et al., 2012) 1,338 controls 13 Quentitative feasories core rs1789891 (ADH1C) (Frant et al., 2012) 1,338 controls 13 Quentitative feasories core rs1789891 (ADH1C) (Frant et al., 2012) 1,338 controls 13 Quentitative feasories core rs1729891 (ADH1C) (Frant et al., 2012) 1,338 controls 13 Quentitative feasories core rs1729891 (ADH1C) (Frant et a	German sample (men)	Case-control status	rs7590720 & rs1344694 (PECR)	(Treutlein et al., 2009)
Jac controls SGS sample Code control status ASS controls Code and Pace Code Code And Pace Code Code And Pace Code Code And Pace Code Code And Pace Code Code Code Code And Pace Code Code And Pace Code C	1,024 cases			[95]
SAct sample: Case-control status None (Bert et al., 2010) 193 LAD cases [94] 602 AA AD cases [97] 602 AA AD cases [97] 57 EA AD cases [97] 58 AA AD cases [97] 58 Ca AD cases [97] 58 Ca AD cases [98] 58 Ca AD cases [20] 59 Ca Case control status None 60 Case control status 10 Case -control status 50 Case control status 100 51 AA D cases 100 52 Case control status 100 52 Case control status 100 53 Case control status 100 53 Case control status 100 53 Case control status 101 53 Case control status 102 53 Casample Case control status <t< td=""><td>996 controls</td><td>6</td><td></td><td></td></t<>	996 controls	6		
1.43 b. Aurotasis[16]1.43 b. Aurotasis[16]409 A. control s[17]409 A. control s[17]407 A. control s[17]407 A. Control s[17]407 A. A. Control s[17]405 A. Control sample:Criterion factor score405 A. Control sample:[10] Case-control status405 A. Control sample:[11] Case-control status405 A. Control sample:[11] Case-control status405 A. Control sample:[11] Case-control status405 A. Control sample:[12] Quantitable refores roce405 A. Control statusNone(12] G. Control sample:[10] Quantitable refores roce13.38 secret AD cases[100]13.38 secret AD cases[100]13.38 secret AD cases[100]13.38 secret AD cases[100]13.38 secret AD cases[101]13.38 secret AD cases[101]13.38 secret AD cases[101]13.38 secret AD cases[101]13.38 secret AD cases[102]13.38 secret AD cases[102]13.38 secret AD cases[103]13.38 secret AD cases[103]13.38 secret AD cases[104]13.38 secret AD cases[104]13.38 secret AD cases[105]13.39 secret AD cases[106]13.39 secre	SAGE sample:	Case-control status	None	(Bierut et al., 2010)
143 is A AD cards GOA A single GA AD cardsCase-control statusNone(Edenberg et al., 2010) [97]52 EA controls19719753 CA AD cards19719753 CA AD cards198198140 AA controls198198163 CA controls198198172 AA100 samthative factor score199173 Sa For AD Cards100 samthative factor score100173 Sa For AD CardsCase-control status1789891 (ADH/IC)(frank et al., 2012) [100]173 Sa For AD CardsCase-control status1788861(Gue et al., 2012) [101]173 Sa For AD CardsDSM-IV criterion countNone(Kard et al., 2013) [102]173 Sa For AD CardsDSM-IV criterion countNone(McGue et al., 2013) [103]173 Sa For AD CardsCase-control status1742492 & st 10516441 (ADH7); [103](Park et al., 2013) [103]173 AD CardsDSM-IV criterion countNone(Gue et al., 2013) [103]174 AD CardsCase-control status1742492 & st 10516441 (ADH7); [103](Park et al., 2014) [103]173 AD CardsDSM-IV criterion count;Carder control status1742492 & st 10516441 (ADH7); [104](Gue et al., 2014) [105]173 AD CardsDSM-IV criterion count;Case-control status	1,235 EA AD cases			[96]
Box A A Dataset Case control status None (Edenberg et al.2010) [97] GV A A Dataset Signal A Dataset Signal A Dataset [97] Signal A Dataset Signal A Dataset Signal A Dataset [97] Signal A Dataset Signal A Dataset Signal A Dataset [98] Signal A Dataset Criterion factor score None (Mendier et al. 2011) [98] Signal A Dataset (1) Case-control status None (Heath et al. 2012) [100] Signal A Controls (3) Quantitative heavines of drinking factor score (100] none (Part et al. 2012) [100] Signal A Controls (3) Quantitative factor score (100] none (2u et al. 2012) [101] Signal A Controls Case-control status None (2u et al. 2012) [101] Signal A Controls Case-control status none (Mong et al. 2013) [102] Signal A Controls Case-control status none (Mong et al. 2013) [102] Signal A Controls Case-control status none (Mong et al. 2013) [103] Signal A Controls Case-control status none (Mong et al. 2014) [103]	1433 EA controls			
Jamps and the second status None [Edenberg et al.,2010] S22 A Controls [Edenberg et al.,2010] [97] S35 A A D cases [98] [98] 140 AA controls [98] [98] S25 A AD Cases [1] Case-control status None [Hether et al., 2011] C35 Controls [1] Case-control status None [Hether et al., 2011] C36 AD cases [2] Quantitative factor score None [Hether et al., 2012] C393 controls [3] Quantitative factor score rescontrol status res	662 AA AD cases			
CLOAR simple Case - control status None (Learner) 357 FA AD crais [97] 357 FA AD crais [97] 356 FA AD crais [98] [98] [98] 156 AA AD crais [98] [98] 160 AA control sample: Citerion factor score None [98] 312 AAS [98] [98] [98] [98] 32 Ad Cases (2) Quantitative factor score cases [99] [98] 33 Soures AD cases (2) Quantitative factor score cases [100] [100] 133 severe AD cases case-control status None [20 or al., 2012] 133 severe AD cases case-control status None [20 or al., 2012] 133 severe AD cases case-control status none (Woing et al., 2013) 134 AD cases case-control status rs1424202 & rs10516411 (ADH7); [Park et al., 2013] 132 Ad Cases case-control status rs1424202 & rs10516411 (ADH7); [Park et al., 2014] 132 Ad Cases case-control status rs1424202 & rs10516411 (ADH7); [Park et al., 2014] 12 2	499 AA controls			(5 1 1 (1 2010)
avid 2 And Castes [97] 32 BA controls [97] 340 A controls [98] 341 AA controls [98] 342 AA controls [98] 32 AA [98] 32 AA [98] 32 AA [99] 3,393 controls (3) Quantitative factor score of dinking factor score (action and score factors facto		Case-control status	None	(Edenberg et al.,2010)
32 of a ManufaceNone(Kendler et al., 2011)MGS2 control sample:Citerion factor scoreNone(Kendler et al., 2011)2,357 EAKasImage: StatusNone(Hetah et al., 2011)2,062 AD cases(2) Quantitative factor scorers1288891 (ADHTC)(Fetah et al., 2012)2,063 AD cases(2) Quantitative factor scorers1288891 (ADHTC)(Frank et al., 2012)2,063 ControlsCase-control statusrs1288891 (ADHTC)(Frank et al., 2012)2,168 controlsCase-control statusNone(Zoo et al., 2012)2,168 controlsCase-control statusNone(Zoo et al., 2013)1,151 E A controlsCase-control statusrs142492 & rs10516441 (ADHT);(Park et al., 2013)1,232 E Asrs61 A AD casesrs671 (ALDHZ)(Quillen et al., 2014)1,17 AD casescase-control statusrs142492 & rs10516441 (ADHT);(Park et al., 2013)1,7 AB E Asrs61 (ALDHZ)(Quillen et al., 2014)(Io1)1,7 AD casesrs671 (ALDHZ)(Quillen et al., 2014)1,2 A Controlsrs375286 6 rs671 (ALDHZ)(Quillen et al., 2014)1,2 A Controlsrs375286 (Case Control statusrs375286 (Case Control ref. 4]1,2 A Controlsrs375286 (Case Control statusrs375286 (Case Control ref. 4]1,2 A Controlsrs375286 (Case Control statusrs375286 (Case Control ref. 4]1,2 A Controlsrs375286 (Case Control statusrs3254574 (Case Control ref. 4]1,2 A Controlsrs338 AArs381802 (ADH18)2,3 A A Controlsrs3	847 EA AD Cases			[97]
Jack And Labe Citerion factor score None (Kendler et al., 2011) JSS Action Jample: (1) Case-control status None (Heath et al., 2011) JSS Action Jample: (1) Case-control status None (Heath et al., 2011) JSS Action Jample: (1) Case-control status rs1789891 (ADH1/C) (Frank et al., 2012) JSS Action Jample: (2) Quantitative factor score rs1789891 (ADH1/C) (Frank et al., 2012) JSS Action Jample: Case-control status ns0 (I00) (I00) JSS Action Jample: Case-control status ns0 (I00) (I00) JSS Action JSS Case-control status None (I00) (I00) JSS Action JSS Case-control status ns142428 z ns105 (641 (ADH7); (I00) (I00) JSS Action JSS Case-control status rs142428 z ns105 (641 (ADH7); (I04) (I03) JSS Action JSS Case-control status rs142428 z ns105 (641 (ADH7); (I04) (I03) JSS Action JSS Case-control status rs122981 (ADH1/D) (Quillen et al., 2014) (I03) JSS Action	352 EA CONTROIS			
Index Citetion factor score None (Kendler et al., 2011) [98] 337 Data S37 Data Citetion factor score None (Kendler et al., 2011) [99] 312 Ads Statialian sample: (1) Case-control status None (Heath et al., 2011) [99] 302 Ads Statialian sample: (2) Quantitative factor score Statialian sample: (Heath et al., 2012) [101] 333 Statialian sample: (3) Quantitative heavines of dinking factor score Statialian sample: (Inter et al., 2012) [101] 3.13 Stover AD cases Case-control status None Zuo et al., 2012) [101] 3.16 Ad controls Case-control status None (Wang et al., 2013) [102] COGA and SAGE meta-analysis: Case-control status rs1789891 (ADH7); (Pati et al., 2013) [102] Statian sample: DSM-IV criterion count None (Wang et al., 2013) [102] COGA and SAGE meta-analysis: Case-control status rs378286 & rs571 (ADH2) (Quillen et al., 2014) [103] Controls Case-control status rs378286 & rs571 (ADH2) (Quillen et al., 2014) [103] Val-ePenn sample: DSM-IV criterion count: Conbined meta-analysis: Ordinal [140 AA controls			
mass buttom sample: Citetion taxtus sche None (Heath et al., 2017) 202 Abs (I) Case-control status None (Heath et al., 2017) 203 Abs (I) Case-control status None (Heath et al., 2017) 3.382 controls (I) Quantitative Factor score (Final et al., 2017) (Final et al., 2017) 3.382 controls (I) Quantitative Factor score (I) Quanti	MGS2 control complet	Critarian factor score	Nono	(Kondlar at al 2011)
Aug Aug Interpret (I) Case - control status None (Heatt et al. 2011) 2062 AD Cases (2) Quantitative factor score s1789891 (ADHTC) (Fank et al. 2012) 2062 AD Cases (2) Quantitative factor score s1789891 (ADHTC) (Fank et al. 2012) 2063 Controls Case control status s1789891 (ADHTC) (Fank et al. 2012) 2.168 Controls Case control status None (Zou et al. 2012) 2.168 Controls Case control status None (Zou et al. 2012) 2.168 Controls (Tint stanple) Case control status (None (None (IIII)) 2.216 Controls Total score (None (None (IIII)) (Pati et al. 2013) 2.221 EAS Total score (IIIII) (IIIIII) (IIIIIIIIII) (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 257 EAc		None	
Autornalize (I) Gascontrol status None (Heath et al., 2011) [9] 2062 AD Cases (2) Quantitative heaviness of dinking' factor score german sample (men) (3) Quantitative heaviness of dinking' factor score (100) (Heath et al., 2012) [101] 1.333 Severe AD cases (Case-control status none [100] 1.333 Severe AD cases (Case-control status None [20] COGA and SAGE meta-analysis: Case-control status None [20] COGA angle: DSM-IV criterion count None (Wang et al., 2013) [102] 1.318 EA controls Factor score None [103] 7.188 EAs [103] [103] Case-control status rs142492 & rs10516441 (ADH7); (Park et al., 2013) [103] 7.188 EAs [104] [104] 279 controls [104] [106] 279 controls [104] [106] 279 control status rs1722865 (located on Chr. 4) [106] 273 EAs Case-control status rs1722865 (located on Chr. 4) [106] 273 EAs Case-control status rs1722864 (ADH2) [20]	2,337 ERS			[90]
Note(new(n	Australian sample:	(1) Case-control status	None	(Heath at al. 2011)
Aussi Foculation Case-control status rs1783891 (ADH1C) (Frank et al., 2012) Aussi Foculation Case-control status rs1788991 (ADH1C) (Frank et al., 2012) Aussi Foculation Case-control status rs1788991 (ADH1C) (Frank et al., 2012) Aussi Foculation Case-control status None (Zuo et al., 2012) Aussi Foculation Case-control status None (Wang et al., 2013) COGA southols Case-control status None (Wang et al., 2013) COGA southols Case-control status rs1424922 & rs10516441 (ADH7); (Park et al., 2013) MCTFR sample: Factor score None (McGue et al., 2013) MCTR sample: Case-control status rs1424922 & rs10516441 (ADH7); (Park et al., 2014) TJO controls Case-control status rs1782896 & rs671 (ALD42) (Quillen et al., 2014) Charles sample (male): Case-control status rs128285257 (ALD42) (Quillen et al., 2014) 102 AD case rs1424928 rs1282894 (ArB40) (Geleenter et al., 2014) 1102 AD case rs1424914 rs12828942 (ArB40) (Geleenter et al., 20		(1) Case-control status (2) Quantitative factor score	None	(neath et al., 2011) [00]
2.232 Automation Case-control status rs1789891 (ADHTC) (Frank et al., 2012) 1.333 evere AD cases Case-control status None (Zuo et al., 2012) 1.343 evere AD cases (Suo et al., 2012) (In0) 1.345 excontrols (Wang et al., 2013) COGA and SAGE meta-analysis: Case-control status None (Wang et al., 2013) 1.345 EA controls (Marg et al., 2013) (In0) (In0) COGA sample: DSM-IV citerion count None (Marg et al., 2013) 1.348 EA controls rs144292 & rs1051641 (ADH7); (Part et al., 2013) Corona comple Case-control status rs142492 & rs1051641 (ADH7); (Part et al., 2013) 1.74 Dc cases rs142492 & rs1051641 (ADH7); (Part et al., 2013) (II03) 212 controls rs122884 (ADH2) (Quillen et al., 2014) (II04) 1.74 Dc cases rs1228242 rs1051641 (ADH7); (Part et al., 2014) (II04) 1.74 Dc cases rs128284 (ADH2) (Quillen et al., 2014) (II04) 1.74 Dc cases rs128284 (ADH18) (Case-control status rs128284 (ADH18) (Case-control status rs128284 (ADH18) (Case-control status <td< td=""><td>2,002 AD cases</td><td>(2) Quantitative factor score</td><td></td><td>[77]</td></td<>	2,002 AD cases	(2) Quantitative factor score		[77]
1333 severe AD ratesCase Control statusChilds (Drifts)(Function (Drifts)1136 controlsCase-control statusNone(Zuo et al., 2012)1131 AAD Cases(Man get al., 2013)(101)1131 AAD CasesFactor score(Man get al., 2013)2322 EAAFactor scoreNone(McGue et al., 2013)117 AD casesFactor scoreNone(McGue et al., 2013)117 AD casesrs671 (ALDH2)(Park et al., 2013)117 AD casesrs671 (ALDH2)(Iotal)117 AD casesrs671 (ALDH2)(Quillen et al., 2014)117 AD casesrs671 (ALDH2)(Iotal)117 AD casesrs671 (ALDH2)(Quillen et al., 2014)117 AD casesrs7362886 & rs671 (ALDH2)(Quillen et al., 2014)117 AD casesrs7362886 (Iotated on Chr. 4)(Iot6)212 controlsrs7362886 (Iotated on Chr. 4)(Iot6)213 Cantolsrs7362886 (Iotated on Chr. 4)(Iot6)214 Cantolsrs1239384 (ADH18)(Iotated on Chr. 4)11589 FA casesrs129984 (Iotated on Chr. 2)(Iotated on Chr. 2)11598 FA casesrs129984 (ADH18)(Iotated on Chr. 10)11598 FA casesrs6056702 (ADH18)(Iotated on Chr. 10) <td>German sample (men)</td> <td>(a) equilibrium cass of uninking factor score</td> <td>rs1789891 (ADH1C)</td> <td>(Frank et al. 2012)</td>	German sample (men)	(a) equilibrium cass of uninking factor score	rs1789891 (ADH1C)	(Frank et al. 2012)
n 168 controls (200 et al., 2012) [101] 1518 EA controls (200 et al., 2012) [101] 1518 EA controls (200 et al., 2012) [101] 1518 EA controls (200 et al., 2013) [101] 1518 EA controls (200 et al., 2013) [102] 1518 EA controls (200 et al., 2013) [102] 1518 EA controls (200 et al., 2013) [102] 152 EA control status (2013) [102] 153 EA control status (2013) [102] 154 EA control status (2013) [102] 157 AD cases (2014) [103] 157 AD cases (2014) [104] 279 control s 152 EA control status (2014) [104] 152 AD cases (2014) [104] 152 AD cases (2014) [104] 152 AD cases (2014) [105] 152 Control s 152 Control s 152 Control status (2014) [105] 152 Controls (2014) [106] 152 Controls (2014) [107] 152 Controls (2014) [107] 152 Controls (2014) [108] (2014) [2014] 152 Controls (2014) [108] (2014) [2014] 152 Controls (2014) [108] (2014) [2014] 152 Controls (2014) [108] 152 Controls (2014) [107] 152 Controls (2014) [107] 153 AA Controls (20	1 333 severe AD cases			[100]
COGA and SACE meta-analysis: Case-control status None (Zuo et al., 2012) (101) 1,40 P A AD cases (101) (101) 1,51 B A controls (101) (101) 681 AA AD cases (Wang et al., 2013) (102) (101) 202 EAS (102) (101) MCTRR sample: Pactor score None (102) MCTRR sample: Case-control status rs142492 & rs10516441 (ADH7); (Park et al., 2013) 117 AD cases rs671 (ALDH2) (104) (102) 279 controls rs672 (ALDH2) (Quillen et al., 2014) 102 controls rs782886 & rs671 (ALDH2) (Quillen et al., 2014) 102 AD cases rs782886 & rs671 (ALDH2) (Quillen et al., 2014) 103 212 controls rs782886 & rs671 (ALDH2) (Quillen et al., 2014) 103 212 controls rs782886 & rs671 (ALDH2) (Quillen et al., 2014) 104 22 controls rs782886 & rs671 (ALDH2) (Quillen et al., 2014) 2379 EA Case-control status rs782886 & rs671 (ALDH2) (Quillen et al., 2014) 1331 AA rs282673 (located on Chr. 4) rs28642574 (located on Chr. 2) rs123994 (ADH18) 2752 EAs rs123994 (ADH18) rs123994 (ADH18) rs123994 (ADH18) 2752 EAs rs123994 (ADH18) rs123994 (ADH	2 168 controls			[100]
1409 EA AD cases (101) 158 EA controls (101) 681 AA AD cases (101) 681 AA AD cases (102) 683 AA controls (102) CGCA sample: DSM-IV criterion count None (102) (102) 7,188 EA (102) Korean sample: Case-control status rs1442492 & rs10516441 (ADH7); (Part et al., 2013) 17 AD cases (102) (102) (103) 17 AD cases (102) (104) (104) 279 controls (102) (104) (104) (104) 279 controls (102) (103) (104) (104) (104) 279 controls (102) (103) (104) (106) (106) 212 controls (24) case-control status rs728286 & rs671 (ALDH2) (Quillen et al., 2014) (105) 2372 EA Case-control status rs72066702 & rs122994 (ADH18) (252) (252) 1311 AA rs1279284 (ADH18) (28) (28) (28) (28) 1335 AA cases rs2066702 (ADH18) (28) (28)	COGA and SAGE meta-analysis	Case-control status	None	(Zuo et al. 2012)
1518 EA controls Loos 608 AA controls (Wang et al., 2013) 608 AA controls [102] COGA sample: DSM-IV criterion count None (Incomposition of the sample) 2322 EAs (Incomposition of the sample) (Incomposition of the sample) (Incomposition of the sample) Action sample: Case-control status rs17142 (ADH2) (Incomposition of the sample) 17 AD cases rs671 (ALDH2) (Oullen et al., 2013) (Incomposition of the sample) 212 controls Combined meta-analysis: Ordinal (Gelernter et al., 2014) (Incol) 122 controls rs7262865 (Incomposition of the sample) (Incomposition of the sample) (Incomposition of the sample) 2/32 EAs combined meta-analysis: Ordinal (Gelernter et al., 2014) (Incomposition of the sample) 2/32 Controls rs7262865 (Incomposition of the sample) Case-control status rs72628615 (Incomposition of the sample) (Walters et al., 2013) 2/32 EAs combined meta-analysis: Case-control status rs7229984 (ADH18) (Walters et al., 2013) 1/331 AA rs7229984 (ADH18) (Kranzler et al., 2019) (Salter et al., 2019) 1/3499 EA controls rs32506702 (ADH18)	1.409 FA AD cases		Hone	[101]
631 A AD Cases 608 AA controls COGA sample: DSM-IV criterion count None [102] 12,22 EAs [102] MCTFR sample: Factor score None [103] Korean sample: Case-control status rs1442492 & rs10516441 (ADH7); [Park et al., 2013) 17 AD cases rs671 (ALDH2) [104] [104] 279 controls [105] [106] [106] 279 controls rs712 (ADH2) (Quillen et al., 2014) [106] 212 controls rs728286 & rs671 (ALDH2) (Quillen et al., 2014) [105] 212 controls rs7282867 (Iocated on Chr. 4) [106] [106] 239 P A Case-control status rs77028615 (Iocated on Chr. 4) [106] 239 F A Case-control status rs7822867 (Iocated on Chr. 4) [106] 2375 E As combined meta-analysis: Case-control rs1473736 (Iocated on Chr. 2) [107] 2395 F A case-control status FAS: Waters et al., 2018) [22] 11,569 E A cases rs1229984 (ADH1B) [28] [28] [28] 3338 AA cases rs1229984 (ADH1B)	1.518 EA controls			[]
608 A. Controls DSM-IV criterion count None (McGue et al., 2013) (102] 2322 EAs (102] MCTFR sample: Factor score None (McGue et al., 2013) (103] MCTFR sample: Case-control status rs1424292 k rs10516441 (ADH7); (Park et al., 2013) (104] T7 AD cases rs671 (ALDH2) (I04] 279 controls rs671 (ALDH2) (Quillen et al., 2014) (104] Chinese sample (male): Case-control status rs3782886 & rs671 (ALDH2) (Quillen et al., 2014) (104] 102 AD cases (Total) [106] (Total) [106] 212 controls (Total) (Gelemter et al., 2014) (105] [106] [106] 2379 EA Case-control status rs12028615 (located on Chr. 4) (rs22984 (ADH18) [106] [106] 2,752 EA Combined meta-analysis: Ordinal (Gelemter et al., 2014) [106] [106] [107] 3,131 AA rs120984 (ADH18) (Xarate et al., 2018) [107] [28] 3,135 AA case rs1209984 (ADH18) [28] [29] [29] [29] [29] [29] [29] [29] [29] [29] [29] [29]	681 AA AD cases			
COGA sample: DSM-IV criterion count None (Wang et al., 2013) [102] 2.32 EAs Factor score None [102] (MCGue et al., 2013) [103] [103] [103] Korean sample: Case-control status rs1442492 & rs10516441 (ADH7); (Park et al., 2013) [103] [104] 17 AD cases rs3782886 & rs671 (ALDH2) (Quillen et al., 2014) [105] [106] 27 D controls rs3782886 & rs671 (ALDH2) (Gelenter et al., 2014) [105] [105] 212 controls rs142492 (Ars100 et al., 2014) [105] [106] [106] 2379 EA Case-control status rs12066702 & rs120984 (ADH18) [Gelenter et al., 2014) [106] 2,379 EA Case-control status rs1237984 (ADH18) [I06] 2,752 EAs rs1247984 (ADH18) [I06] [I06] 2,752 EAs rs124984 (ADH18) [I06] [I06] 1,509 EA cases rs122984 (ADH18) [I06] [I06] 1,509 EA cases rs122984 (ADH18) [I06] [I06] 3,338 AA cases rs2096702 (ADH18) [I07] [I07] 3,338 AA cases	608 AA controls			
2.322 Ras' [102] ************************************	COGA sample:	DSM-IV criterion count	None	(Wang et al., 2013)
MCTR sample: Factor score None (McGue et al., 2013) [103] 7,188 EAS Case-control status rs1442492 & rs10516441 (ADH7); (Park et al., 2013) [104] 177 AD cases rs671 (ALDH2) [104] 279 controls [103] [104] 279 controls rs671 (ALDH2) (Quillen et al., 2014) [105] 212 controls [104] [105] 212 controls rs17028615 (located on Chr. 4) [105] [106] 2,379 EA Case-control status rs17028615 (located on Chr. 4) [106] [106] 2,379 EA Case-control status rs128542574 (located on Chr. 4) [106] [106] 2,752 EAS rs12437396 (located on Chr. 4) [106] [106] [106] 2,752 EAS rs12437396 (located on Chr. 4) [106] [106] [106] 3,118 AA rs123984 (ADH18) [106] [28] 3,275 EAS rs1249984 (ADH18) [28] [29] 3,115 AAS rs1229984 (ADH18) [29] [29] 3,135 AA controls rs1229984 (ADH18) [29] [29] 3,355 AA controls rs1229984 (ADH18) [29] [29] 3,356 AA controls<	2,322 EAs			[102]
7,188 As [103] Korean sample: Case-control status rs142492.8 rs10516441 (ADH7); (Park et al., 2013) 17 AD cases [104] [104] [104] 279 controls [105] [106] Chinese sample (male): Case-control status rs3782886 & rs671 (ALDH2) (Quillen et al., 2014) 102 AD cases [105] [105] [105] 212 controls [106] [106] [106] 2,379 EA Case-control status rs17028615 (located on Chr. 4) [106] 3,318 AA rs28542574 (located on Chr. 4) [106] [106] 3,318 AA rs1229984 (ADH1B) [275] [275] 7,752 EAs Combined meta-analysis: Case-control [11,31] [136] 1,311 AAs rs1229984 (ADH1B) [28] [335] 3,353 AA cases rs1229984 (ADH1B) [28] 3,335 AA cases rs1229984 (ADH1B) [28] 3,335 AA cases rs1229984 (ADH1B) [29] 17,364 EA controls rs1229984 (ADH1B) [29] 3,335 AA controls rs1229984 (ADH1B) [29] 17,364 EA controls	MCTFR sample:	Factor score	None	(McGue et al., 2013)
Korean sample: Case-control status rs1424/22 k rs10516441 (ADH7); (Park et al., 2013) 17 AD cases rs671 (ALDH2) [104] 279 controls rs671 (ALDH2) (Quillen et al., 2014) 102 AD cases rs3782886 & rs671 (ALDH2) (Quillen et al., 2014) 212 controls rs17028615 (located on Chr. 4) [106] 2379 FA Case-control status rs1028615 (located on Chr. 4) [106] 2,379 FA Case-control status rs1028615 (located on Chr. 4) [106] 3,318 AA rs28542574 (located on Chr. 4) [106] rs124944 (ADH1B) 2,752 EAs rs1266702 & rs1229984 (ADH1B) [28] Meta-analysis and independent sample: Case-control status rs122984 (ADH1B) [28] Meta-analysis and independent sample: Case-control status rs12984 (ADH1B) [29] 17,560 EA cases rs120984 (ADH1B) [29] [29] 245 AA controls rs120984 (ADH1B) [29] [29] 335 AA cases rs120984 (ADH1B) [29] [29] 3455 Caraes rs1209984 (ADH1B) [29] [2	7,188 EAs			[103]
117 AD cases rs671 (ALDH2) [104] 279 controls [105] Chinese sample (male): Case-control status rs3782886 & rs671 (ALDH2) (Quillen et al., 2014) 102 AD cases [105] [105] 212 controls [106] [106] 2379 EA Case-control status rs17028615 (located on Chr. 4) [106] 3.318 AA case-control status rs2066702 & rs1229984 (ADH18) [201] 2,752 EAs combined meta-analysis: case-control [106] 1,311 AAs rs1237986 (located on Chr. 4) [106] 1,311 AAs rs1229984 (ADH18) [28] 2,752 EAs combined meta-analysis: case-control [28] 3,335 AA cases rs1229984 (scated on Chr. 4) [28] 3,335 AA cases rs1229984 (aDH18) [28] 3,335 AA controls rs1229894 (ADH18) [29] 3,335 AA cases rs1229864 (ADH18) [29] 3,345 AA cases rs1229984 (ADH18) [29] 167,346 EA controls rs1229864 (ADH18) [29] 167,346 EA controls rs122984 (ADH18) [29] 17,267 AA cases rs122	Korean sample:	Case-control status	rs1442492 & rs10516441 (ADH7);	(Park et al., 2013)
279 controls (Quillen et al., 2014) 102 AD cases [105] 212 controls [105] 212 controls [106] 2,379 EA Case-control status rs170280515 (located on Chr. 4) [106] 3,318 AA rs28542574 (located on Chr. 4) [106] [106] 3,318 AA rs2066702 & rs1229984 (ADH1B) [2014] [2014] 2,752 EAs Combined meta-analysis: Case-control [311 AAs [28] Meta-analysis and independent sample: Case-control status EAs: (Walters et al., 2014) 1,569 EA cases rs1229984 (ADH1B) [28] 3,335 AA cases rs1229984 (ADH1B) [28] 3,335 AA cases rs1229984 (ADH1B) [29] 2,945 AA controls rs206702 (ADH1B) [29] 3,335 AA cases rs120984 (ADH1B) [29] 2,945 AA controls rs120984 (ADH1B) [29] 1,569 EA cases rs1206702 (ADH1B) [29] 3,469 EA cases rs1206702 (ADH1B) [29] 1,264 Cases rs12679670 (ADH1B) [29] 1,264 Cases rs1267971 (ADH1C* rs1269941 (ADH1B)* <td< td=""><td>117 AD cases</td><td></td><td>rs671 (<i>ALDH2</i>)</td><td>[104]</td></td<>	117 AD cases		rs671 (<i>ALDH2</i>)	[104]
Chinese sample (male): Case-control status rs3782886 & rs671 (ALDH2) (Quillen et al., 2014) [105] 212 controls [105] [105] 212 controls Case-control status rs17028615 (located on Chr. 4) [106] 3,318 AA rs28642574 (located on Chr. 4) [106] [106] 3,318 AA rs28542574 (located on Chr. 4) [106] 2,752 EAs Combined meta-analysis: Case-control [106] 2,752 EAs Combined meta-analysis: Case-control [106] 1,311 AAs rs1229984 (ADH1B) [28] Meta-analysis and independent sample: Case-control status EAs: (Walters et al., 2018) 1,569 EA cases rs1229984 (ADH1B) [28] 34,999 EA controls rs1229984 (ADH1B) [28] 3458 EA cases rs1229984 (ADH1B) [29] 167,346 EA controls rs1229984 (ADH1B) [29] 172,67 AA cases rs1250986 (ADH1C)* [29] 172,67 AA cases rs120986 (ADH1C)* [29] 3,465 EA controls rs120986 (ADH1C)* [29] 17,267 AA cases rs120986 (ADH1C)* [29] 3,465 EA controls	279 controls			
102 AC cases [105] 102 controls [106] Yale-Penn sample: DSM-IV criterion count; Combined meta-analysis: Ordinal (Gelernter et al., 2014) 2,379 EA Case-control status rs17028615 (located on Chr. 4) [106] 3,318 AA rs28542574 (located on Chr. 4) [106] SAGE sample: rs1202984 (ADH18) Combined meta-analysis: Case-control 1,311 AAs rs1437396 (located on Chr. 2) rs1229984 (ADH18) Meta-analysis and independent sample: Case-control status EAs: (Walters et al., 2018) 1,569 EA cases rs1229984 (ADH18) [28] 34,999 EA controls As: rs120984 k rs3811802 (ADH18) [28] 34,999 EA controls As: rs2066702 (ADH18) [28] 2,945 AA controls rs1229984 (ADH18)* [29] [29] 167,346 EA controls rs122984 (ADH18)* [29] [29] 17,67 AA cases rs1229984 (ADH18)* [29] [29] 17,267 AA cases rs540565 (ADH4) [29] [29] 17,267 AA cases rs540565 (ADH3) [29] [29] 17,267 AA cases rs540566 (X3) </td <td>Chinese sample (male):</td> <td>Case-control status</td> <td>rs3782886 & rs671 (ALDH2)</td> <td>(Quillen et al., 2014)</td>	Chinese sample (male):	Case-control status	rs3782886 & rs671 (ALDH2)	(Quillen et al., 2014)
212 controls Combined meta-analysis: Ordinal (Gelernter et al., 2014) 2,379 EA Case-control status rs17028615 (located on Chr. 4) [106] 3,318 AA rs22645274 (located on Chr. 4) [106] 3,318 AA rs12028612 (located on Chr. 4) [106] 3,318 AA rs12056702 (kDH1B) [2752 EAs 2,752 EAs rs13396 (located on Chr. 2) rs1229984 (ADH1B) 2,752 EAs rs1329984 (ADH1B) [28] 34,999 EA controls AAs: rs1229984 (ADH1B) 3,335 AA cases rs1229984 (ADH1B) [28] 3,345 AA cases rs1229984 (ADH1B) [29] 3,346 Cases rs1229984 (ADH1B) [29] 3,345 AA cases rs1229984 (ADH1B)* [29] 3,345 AA cases rs1209302 (ADH1B)* [29] 3,346 Controls rs120325 (ADH4) [39] 3,341 AA controls rs1206326 (GCKR)* [346 EA	102 AD cases			[105]
Yale-Yenn sample: DSM-IV criterion count; Combined meta-analysis: Ordinal (Gelernter et al., 2014) 2,379 EA Case-control status rs17028615 (located on Chr. 4) 3,318 AA rs28542574 (located on Chr. 4) [106] 3,318 AA rs2066702 & rs1229984 (ADH1B) [752 EAs 2,752 EAs Combined meta-analysis: Case-control [311 AAs Meta-analysis and independent sample: Case-control status EAs: 1,311 AAs rs1229984 (ADH1B) [28] 34995 EA cases rs1229984 & rs3811802 (ADH1B) [28] 34999 EA controls AAs: [333 SA cases [29] 2,945 AA controls Trans-population Meta-analysis: (Kranzler et al., 2019) 7167,346 EA cases rs1229984 (ADH1B)* [29] 167,346 EA controls rs122984 (ADH1B)* [29] 17,267 AA cases rs122984 (ADH1B)* [29] 167,346 EA controls rs122984 (ADH1B)* [29] 167,346 EA controls rs1206026 (GXR)* [3107325 (SL29AB)* 17,267 AA cases rs190606 (GXI3) [102] 17,267 AA cases rs190606 (GXR)* [102] 17,267 AA cases rs1906104 [212 controls			(6 1
2,379 EA Case-control status rs17/28615 (located on Chr. 4) [106] SAGE sample: rs2862574 (located on Chr. 4) status SAGE sample: rs2066702 & rs1229984 (ADH18) zase-control 2,752 EAs Combined meta-analysis: Case-control rs1437396 (located on Chr. 2) 1,311 AAs rs1437396 (located on Chr. 2) rs1229984 (ADH18) Meta-analysis and independent sample: Case-control status EAs: (Walters et al., 2018) 1,569 EA cases rs1229984 (ADH18) [28] 3,335 AA cases rs2066702 (ADH18) [28] 2,945 AA controls Ass: rs2066702 (ADH18) [29] 2,945 AA controls rs1612735 (ADH16)* [29] [29] 167,346 EA controls rs1612735 (ADH10)* [29] 167,346 EA controls rs1620362 (GCKR)* [29] 17,267 AA cases rs1612735 (ADH1C)* [29] 3,381 AA controls rs18026326 (GCKR)* [29] 17,226 LA controls rs1906104 (located on Chr. 10) rs61402812 3,449 LA cases rs5140665 (SIX3) [107] 1,210 EAA controls rs7906104 (located on Chr. 10) rs61420385 (FTO)* <td>Yale-Penn sample:</td> <td>DSM-IV criterion count;</td> <td>Combined meta-analysis: Ordinal</td> <td>(Gelernter et al., 2014)</td>	Yale-Penn sample:	DSM-IV criterion count;	Combined meta-analysis: Ordinal	(Gelernter et al., 2014)
3,318 AA rs20642/34 (located on Chr. 4) SAGE sample: rs2066702 & rs122984 (ADH1B) 2,752 EAs Combined meta-analysis: Case-control 1,311 AAs rs123796 (located on Chr. 2) Neta-analysis and independent sample: Case-control status 11,569 EA cases rs1229984 (ADH1B) 13,335 AA cases rs2066702 (ADH1B) 2,945 AA controls AAs: 3,335 AA cases rs2066702 (ADH1B) 2,945 AA controls Trans-population Meta-analysis: (Kranzler et al., 2019) 34,658 EA cases rs1229984 (ADH1B)* [29] 167,346 EA controls rs1612735 (ADH1C)* [29] 17,267 AA cases rs1620984 (ADH1B)* [29] 17,374 FA controls rs1260326 (GCKR)* [29] 3,341 AA controls rs1260326 (GCKR)* [29] 1,7267 AA cases rs5100326 (GCKR)* [29] 1,7267 AA cases rs51002812 & rs4936277 (DRD2) [21] 1,7267 AA cases rs5190604 (located on Chr. 10) [46 EAA cases rs143705 (I/C)* 1,210 EAA controls rs1490285 (F70)* [107] [107] 1,210 EAA controls Case-control status; <td>2,379 EA</td> <td>Case-control status</td> <td>rs1/028615 (located on Chr. 4)</td> <td>[106]</td>	2,379 EA	Case-control status	rs1/028615 (located on Chr. 4)	[106]
SACE sample. is2000/02 at is122904 (aDH1b) 2/52 EAs Combined meta-analysis: Case-control 1,311 AAs rs1437396 (located on Chr. 2) Meta-analysis and independent sample: Case-control status I1,569 EA cases rs1229984 (ADH1B) 84,999 EA controls AAs: 3,335 AA cases rs2066702 (ADH1B) 2,945 AA controls Trans-population Meta-analysis: MVP sample: Case-control status MVP sample: Case-control status 17,267 AA cases rs1229984 (ADH1B)* 17,267 AA cases rs1229984 (ADH1B)* 17,267 AA cases rs12603702 (ADH1B)* 17,267 AA cases rs1220984 (ADH1B)* 10,726 LA controls rs1220984 (ADH1B)* 10,726 LA controls rs12003725 (SLC39A8)* 10,726 LA controls rs13107325 (SLC39A8)* 1,210 EAA controls rs120805 (FTO)* 1,210 EAA controls rs1421085 (FTO)* 1,210 EAA controls rs142085 (FTO)* 1,210 EAA controls <td>SAGE complex</td> <td></td> <td>rs2056702 8, rs1220084 (ADU1P)</td> <td></td>	SAGE complex		rs2056702 8, rs1220084 (ADU1P)	
2/ J2 ChSCombine Inclamanys Case-Control1,311 AAsrs143736 (located on Chr. 2) rs1229984 (ADH1B)Meta-analysis and independent sample:Case-control statusIJ,569 EA casesrs1229984 (rs3811802 (ADH1B)3,335 AA casesrs2066702 (ADH1B)2,945 AA controlsAAs:3,335 AA casesrs2066702 (ADH1B)2,945 AA controlsrs129984 (ADH1B)*(Kranzler et al., 2019)76,746 EA controlsrs125984 (ADH1B)*17,267 AA casesrs1612735 (ADH1C)*17,267 AA casesrs580053 (ADH4)3,348 IA controlsrs15120326 (GCKR)*3,449 LA casesrs5800523 (ADH4)3,449 LA casesrs5400606 (SIX3)10,726 LA controlsrs13107325 (SLC39A8)*164 EAA casesrs540026 (GCKR)*1,210 EAA controlsrs1421085 (FTO)*1,210 EAA controlsrs1421085 (FTO)*144 SAA controlsrs1421085 (FTO)*144 SAA controlsSom-IV criterion count;171 TLA CasesDSM-IV criterion count;172 ST AA ControlsDSM-IV criterion count;172 ST AA ControlsDSM-IV individual criteria248 A ControlsCase-control status;174 ST AC controlsSom-IV individual criteria248 A ControlsSom-IV criterion count;174 ST AC controlsSom-IV criterion count;174 ST AC controlsSom-IV criterion count;175 AA ControlsDSM-IV individual criteria248 AC controlsSom-IV criterion count;174 ST A ControlsSom AC cases174 ST AC c	2 752 EAc		Combined meta-analysis: Case-control	
Instance Instance <td< td=""><td>2,732 LAS</td><td></td><td>rs1437396 (located on Chr. 2)</td><td></td></td<>	2,732 LAS		rs1437396 (located on Chr. 2)	
Meta-analysis and independent sample:Case-control statusEAs:(Walters et al., 2018)11,569 EA casesrs1229984 & rs3811802 (ADH1B)[28]34,999 EA controlsAAs:335 AA casesrs2066702 (ADH1B)2,945 AA controlsAAs:rs0206702 (ADH1B)2,945 AA controlsTrans-population Meta-analysis:(Kranzler et al., 2019)34,658 EA casesrs1229984 (ADH1B)*[29]167,346 EA controlsrs12068763 (ADH4)[29]39,381 AA controlsrs1260563 (ADH4)[29]39,381 AA controlsrs1260326 (GCKR)*			rs1229984 (ADH1R)	
Inclusion material material manufaction statusInclusion material mat	Meta-analysis and independent sample	Case-control status	FAs	(Walters et al. 2018)
Algop Ex controlsAAs:3,335 AA casesrs2066702 (ADH1B)2,945 AA controlsMVP sample:Case-control statusTrans-population Meta-analysis:(Kranzler et al., 2019)167,346 EA controlsrs1229984 (ADH1B)*17,267 AA casesrs1229884 (ADH1C)*17,267 AA casesrs1260326 (GCKR)*3,449 LA casesrs1260326 (GCKR)*3,449 LA casesrs1260326 (GCKR)*3,449 LA casesrs1260326 (GCKR)*10,726 LA controlsrs13107325 (SLC39A8)*164 EAA casesrs540606 (SIX3)10,726 LA controlsrs13107325 (SLC39A8)*164 EAA casesrs540606 (SIX3)10,726 LA controlsrs142108 (FTO)*12,10 EAA controlsrs142108 (FTO)*144 SAA controlsrs142108 (FTO)*144 SAA controlsrs122984 (ADH1B)1951 AA ControlsDSM-IV criterion count;1951 AA ControlsDSM-IV riterion count;1951 AA ControlsDSM-IV individual criteria1951 AA Controlsrs122984 (ADH1B)1951 AA ControlsDSM-IV individual criteria2438 EA Controlsrs122984 (ADH1B)1951 AA ControlsSM-IV and Diagnoses (EA + AA):1951 AA ControlsDSM-IV individual criteria2438 EA Controlsrs122984 (ADH1B)1951 AA ControlsSM-IV and Diagnoses (EA + AA):1951 AA ControlsDSM-IV individual criteria2438 EA Controlsrs122984 (ADH1B)1951 AA ControlsSM-IV individual criteria2438 EA Controlsrs61826952 (RABGAP1L) <td>11 569 FA cases</td> <td></td> <td>rs1229984 & rs3811802 (ADH1B)</td> <td>[28]</td>	11 569 FA cases		rs1229984 & rs3811802 (ADH1B)	[28]
3,35 AA cases 3,35 AA cases 2,945 AA controls MVP sample: Case-control status Trans-population Meta-analysis: (Kranzler et al., 2019) 34,658 EA cases rs1229984 (ADH1B)* [29] 34,658 EA cases rs1229984 (ADH1C)* 17,267 AA cases rs1229384 (ADH1C)* 17,267 AA cases rs1260326 (GCKR)* 3,449 LA cases rs540606 (<i>SIX</i> 3) 10,726 LA controls rs13107325 (<i>SLC39AB</i>)* 164 EAA cases rs61902812 & rs4936277 (<i>DRD2</i>) 1,210 EAA controls rs1207325 (<i>SLC39AB</i>)* 164 EAA cases rs61902812 & rs4936277 (<i>DRD2</i>) 1,210 EAA controls rs12085 (<i>FTO</i>)* 1,210 EAA controls (<i>Lai</i> et al., 2019) 46 SAA cases rs1229984 (<i>ADH1B</i>) [107] 951 AA controls DSM-IV criterion count; rs1229984 (<i>ADH1B</i>) [107] 951 AA Controls DSM-IV individual criteria rs61826952 (<i>RABGAP1L</i>) 411 EA Cases 2438 EA Controls rs1220984 (<i>ADH1B</i>) (Sun et al., 2019) 533 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>ADH1B</i>) (Sun et al., 2019) 534 AD Cases rs619(<i>A</i>	34.999 EA controls		AAs:	[20]
2.945 A4 controlsTrans-population Meta-analysis:(Kranzler et al., 2019)34,658 EA casesrs1229984 (ADH1B)*[29]167,346 EA controlsrs1612735 (ADH1C)*[29]167,346 EA controlsrs1612735 (ADH1C)*[29]17,267 AA casesrs5860563 (ADH4)[29]39,381 AA controlsrs1260326 (GCKR)*[29]39,381 AA controlsrs1260326 (GCKR)*[29]10,726 LA controlsrs120325 (SLC39A8)*[21]10,726 LA controlsrs13107325 (SLC39A8)*[21]10,726 LA controlsrs13107325 (SLC39A8)*[21]104 SAA casesrs61902812 & rs4936277 (DRD2)[21]1,210 EAA controlsrs1421085 (FTO)*[14]144 SAA controlsrs1421085 (FTO)*[10]144 SAA controlsrs1229984 (ADH1B)[107]206 A sample:Case-control status;DSM-IV criterion count;rs1229984 (ADH1B)207 S1 AA ControlsDSM-IV individual criteriars61826952 (RABGAP1L)2411 EA Cases2438 EA Controlsrs1229984 (ADH1B)[107]233 AD CasesCase-control statusrs1229984 (ADH1B)[108]233 AD Casesrs612.02984 (ADH1B)[108]2488 Controlsrs612.02984 (ADH1B)[108]	3.335 AA cases		rs2066702 (ADH1B)	
MVP sample:Case-control statusTrans-population Meta-analysis:(Kranzler et al., 2019)34,658 EA casesrs1229984 (ADH1B)*[29]167,346 EA controlsrs1612735 (ADH1C)*[29]167,346 EA controlsrs1612735 (ADH1C)*[29]17,267 AA casesrs5860563 (ADH4)[29]39,381 AA controlsrs1260326 (GCKR)*[20]3,449 LA casesrs1260326 (GCKR)*[20]3,449 LA casesrs13107325 (SLC39A8)*[20]10,726 LA controlsrs13107325 (SLC39A8)*[20]10,726 LA controlsrs13107325 (SLC39A8)*[20]10,726 LA controlsrs13107325 (SLC39A8)*[20]12,10 EAA controlsrs1421085 (FTO)*[20]1,210 EAA controlsrs1421085 (FTO)*[20]1,44 SAA controlsrs1421085 (FTO)*[10]144 SAA controlsrs1229984 (ADH1B)[107]20GA sample:Case-control status;DSM-IV AUD Diagnoses (EA + AA):[Lai et al., 2019)880 AA CasesDSM-IV criterion count;rs1229984 (ADH1B)[107]951 AA ControlsDSM-IV criteriars61826952 (RABGAP1L)[107]951 AA ControlsDSM-IV individual criteriars61826952 (RABGAP1L)[21]2438 EA Controlsrs1229984 (ADH1B)[108]533 AD Casesrs617 (ALDH2)[108]	2,945 AA controls			
34,658 EA casesrs1229984 (ADH1B)*[29]167,346 EA controlsrs1612735 (ADH1C)*17,267 AA casesrs5860563 (ADH4)39,381 AA controlsrs1260326 (GCKR)*3,449 LA casesrs540606 (S/X3)10,726 LA controlsrs13107325 (SLC39A8)*164 EAA casesrs61902812 & rs4936277 (DRD2)1,210 EAA controlsrs7906104 (located on Chr. 10)46 SAA casesrs13107325 (FTO)*144 SAA controlsrs1421085 (FTO)*144 SAA controls*Loci significant in both AUDIT-C and AUD GWASsCOGA sample:Case-control status;B80 AA CasesDSM-IV criterion count;951 AA ControlsDSM-IV individual criteria2438 EA Controlsrs1229984 (ADH1B)2411 EA CasesCase-control status2438 EA Controlsrs1229984 (ADH1B)411 EA CasesCase-control status2438 EA Controlsrs1229984 (ADH1B)438 EA Controlsrs1229984 (ADH1B)4438 EA controlsrs1229984 (ADH1B)4438 EA controlsrs1229984 (ADH1B)444 Casesrs122984 (ADH1B)2438 EA Controlsrs1229984 (ADH1B)445 Casesrs1229984 (ADH1B)446 Casesrs1229984 (ADH1B) <tr< td=""><td>MVP sample:</td><td>Case-control status</td><td>Trans-population Meta-analysis:</td><td>(Kranzler et al., 2019)</td></tr<>	MVP sample:	Case-control status	Trans-population Meta-analysis:	(Kranzler et al., 2019)
167,346 EA controlsrs1612735 (ADH1C)*17,267 AA casesrs5860563 (ADH4)39,381 AA controlsrs1260326 (GCKR)*3,449 LA casesrs540606 (SIX3)10,726 LA controlsrs13107325 (SLC39A8)*164 EAA casesrs61902812 & rs4936277 (DRD2)1,210 EAA controlsrs7906104 (located on Chr. 10)46 SAA casesrs1421085 (FTO)*144 SAA controlsrs1421085 (FTO)*144 SAA controls(Lai et al., 2019)880 AA CasesDSM-IV criterion count;951 AA ControlsDSM-IV individual criteria2438 EA Controlsrs122984 (ADH1B)2411 EA CasesCase-control status2438 EA Controlsrs122984 (ADH1B)411 Chinese sample:Case-control status2438 EA Controlsrs122984 (ADH1B)2438 EA Controlsrs122984 (ADH1B)2449 EA Casesrs122984 (ADH1B)2449 EA Controlsrs122984 (ADH1B)2449 EA Controlsrs671 (A	34,658 EA cases		rs1229984 (ADH1B)*	[29]
17,267 AA cases rs5860563 (ADH4) 39,381 AA controls rs1260326 (GCKR)* 3,449 LA cases rs540606 (SIX3) 10,726 LA controls rs13107325 (SLC39A8)* 164 EAA cases rs61902812 & rs4936277 (DRD2) 1,210 EAA controls rs7906104 (located on Chr. 10) 46 SAA cases rs1421085 (FTO)* 144 SAA controls rs1421085 (FTO)* 144 SAA controls (Lai et al., 2019) 880 AA Cases DSM-IV criterion count; rs1229984 (ADH1B) [107] 951 AA Controls DSM-IV individual criteria rs61826952 (RABGAP1L) 2411 EA Cases 2438 EA Controls Ts1229984 (ADH1B) (Sun et al., 2019) 533 AD Cases Case-control status rs1229984 (ADH1B) [108] 233 AD Cases Case-control status rs1229984 (ADH1B) [108]	167,346 EA controls		rs1612735 (ADH1C)*	
39,381 AA controlsrs1260326 (GCKR)*3,449 LA casesrs540606 (SIX3)10,726 LA controlsrs13107325 (SLC39A8)*164 EAA casesrs61902812 & rs4936277 (DRD2)1,210 EAA controlsrs7906104 (located on Chr. 10)46 SAA casesrs1421085 (FTO)*144 SAA controls*Loci significant in both AUDIT-C and AUD GWASsCOGA sample:Case-control status;DSM-IV and Diagnoses (EA + AA):COGA sample:Case-control status;DSM-IV AUD Diagnoses (EA + AA):880 AA CasesDSM-IV criterion count;rs1229984 (ADH1B)951 AA ControlsDSM-IV individual criteriars61826952 (RABGAP1L)2411 EA Cases2438 EA Controlsrs1229984 (ADH1B)2438 EA Controlsrs1229984 (ADH1B)(Sun et al., 2019)533 AD CasesCase-control statusrs61229984 (ADH1B)2484 Controlsrs6122984 (ADH1B)[108]	17,267 AA cases		rs5860563 (ADH4)	
3,449 LA cases rs540606 (<i>SIX3</i>) 10,726 LA controls rs13107325 (<i>SLC39A8</i>)* 164 EAA cases rs61902812 & rs4936277 (<i>DRD2</i>) 1,210 EAA controls rs7906104 (located on Chr. 10) 46 SAA cases rs1421085 (<i>FTO</i>)* 144 SAA controls rs1421085 (<i>FTO</i>)* 144 SAA controls *Loci significant in both AUDIT-C and AUD GWASs COGA sample: Case-control status; DSM-IV AUD Diagnoses (EA + AA): (Lai et al., 2019) 880 AA Cases DSM-IV criterion count; rs1229984 (<i>ADH1B</i>) [107] 951 AA Controls DSM-IV individual criteria rs61826952 (<i>RABGAP1L</i>) 2411 EA Cases 2438 EA Controls [107] 953 AD Cases Case-control status rs1229984 (<i>ADH1B</i>) (Sun et al., 2019) 533 AD Cases Case-control status rs1229984 (<i>ADH1B</i>) [108] 2438 EA controls rs1229984 (<i>ADH1B</i>) [108] [108]	39,381 AA controls		rs1260326 (GCKR)*	
10,726 LA controlsrs13107325 (<i>SLC39A</i>)*164 EAA casesrs61902812 & rs4936277 (<i>DRD2</i>)1,210 EAA controlsrs7906104 (located on Chr. 10)46 SAA casesrs1421085 (<i>FTO</i>)*144 SAA controlsrs1421085 (<i>FTO</i>)*144 SAA controls*Loci significant in both AUDIT-C and AUD GWASsCOGA sample:Case-control status;DSM-IV AUD Diagnoses (EA + AA):880 AA CasesDSM-IV criterion count;rs1229984 (<i>ADH1B</i>)951 AA ControlsDSM-IV individual criteriars61826952 (<i>RABGAP1L</i>)2411 EA Cases2438 EA Controls107]953 AD CasesCase-control statusrs1229984 (<i>ADH1B</i>)953 AD CasesCase-control statusrs671 (<i>ALDH2</i>)2848 Controls108]	3,449 LA cases		rs540606 (<i>SIX3</i>)	
164 EAA casesrs61902812 & rs4936277 (DRD2)1,210 EAA controlsrs7906104 (located on Chr. 10)46 SAA casesrs1421085 (FTO)*144 SAA controls*Loci significant in both AUDIT-C and AUD GWASsCOGA sample:Case-control status;DSM-IV criterion count;rs1229984 (ADH1B)951 AA ControlsDSM-IV individual criteria2438 EA Controlsrs1229984 (ADH1B)433 AD CasesCase-control status445 ControlsSample:2438 EA controlsrs1229984 (ADH1B)445 ControlsCase-control status445 ControlsSample:445 ControlsCase-control status445 ControlsCase-control status445 ControlsCase-control status445 ControlsCase-control status445 ControlsSample:445 ControlsCase-control status445 ControlsSample:445 ControlsCase-control status445 ControlsSample:445 ControlsSample:<	10,726 LA controls		rs13107325 (<i>SLC39A8</i>)*	
1,210 EAA controlsrs7906104 (located on Chr. 10)46 SAA casesrs1421085 (FTO)*144 SAA controls*Loci significant in both AUDIT-C and AUD GWASsCOGA sample:Case-control status;DSM-IV criterion count;rs1229984 (ADH1B)951 AA ControlsDSM-IV individual criteria2431 EA Cases2438 EA ControlsHan Chinese sample:Case-control status533 AD CasesCase-control status2484 Controls[108]	164 EAA cases		rs61902812 & rs4936277 (DRD2)	
46 SAA cases rs1421085 (FTO)* 144 SAA controls *Loci significant in both AUDIT-C and AUD GWASs COGA sample: Case-control status; DSM-IV AUD Diagnoses (EA + AA): (Lai et al., 2019) 880 AA Cases DSM-IV criterion count; rs1229984 (ADH1B) [107] 951 AA Controls DSM-IV individual criteria rs61826952 (RABGAP1L) 2411 2411 EA Cases 2438 EA Controls Image: Sample: Case-control status rs1229984 (ADH1B) (Sun et al., 2019) 533 AD Cases rs671 (ALDH2) [108] [108]	1,210 EAA controls		rs7906104 (located on Chr. 10)	
144 SAA controls*Loci significant in both AUDIT-C and AUD GWASsCOGA sample:Case-control status;DSM-IV AUD Diagnoses (EA + AA):(Lai et al., 2019)880 AA CasesDSM-IV criterion count;rs1229984 (ADH1B)[107]951 AA ControlsDSM-IV individual criteriars61826952 (RABGAP1L)24112411 EA Cases2438 EA Controlsrs1229984 (ADH1B)(Sun et al., 2019)33 AD Casesrs671 (ALDH2)[108]	46 SAA cases		rs1421085 (<i>FTO</i>)*	
COGA sample:Case-control status;DSM-IV AUD Diagnoses (EA + AA):(Lai et al., 2019)880 AA CasesDSM-IV criterion count;rs1229984 (ADH1B)[107]951 AA ControlsDSM-IV individual criteriars61826952 (RABGAP1L)2411 EA Cases2438 EA Controlsrs1229984 (ADH1B)(Sun et al., 2019)33 AD Casesrs671 (ALDH2)[108]	144 SAA controls		*Loci significant in both AUDIT-C and AUD GWASs	
880 AA CasesDSM-IV criterion count;rs1229984 (ADH1B)[107]951 AA ControlsDSM-IV individual criteriars61826952 (RABGAP1L)2411 EA Cases2438 EA ControlsHan Chinese sample:Case-control statusrs1229984 (ADH1B)533 AD Casesrs671 (ALDH2)[108]2848 Controls	COGA sample:	Case-control status;	DSM-IV AUD Diagnoses (EA + AA):	(Lai et al., 2019)
951 AA ControlsDSM-IV individual criteriars61826952 (RABGAP1L)2411 EA Cases2438 EA Controls2438 EA Controlsrs1229984 (ADH1B)Han Chinese sample:Case-control status533 AD Casesrs671 (ALDH2)2848 Controls108]	880 AA Cases	DSM-IV criterion count;	rs1229984 (ADH1B)	[107]
2411 EA Cases2438 EA ControlsHan Chinese sample:Case-control statusrs1229984 (ADH1B)(Sun et al., 2019)533 AD Casesrs671 (ALDH2)2848 Controls[108]	951 AA Controls	DSM-IV individual criteria	rs61826952 (RABGAP1L)	
2438 EA Controlsrs1229984 (ADH1B)(Sun et al., 2019)Han Chinese sample:Case-control statusrs671 (ALDH2)[108]533 AD Casesrs671 (ALDH2)[108]	2411 EA Cases			
Han Chinese sample: Case-control status rs1229984 (ADH1B) (Sun et al., 2019) 533 AD Cases rs671 (ALDH2) [108] 2848 Controls	2438 EA Controls	Gauge and the last state of		(Com et al. 2010)
2848 Controls [108]	Han Chinese sample:	Case-control status	rs1229984 (ADH1B)	(Sun et al., 2019)
	2848 Controls		1307 I (ALUTIZ)	[100]

AUD, Alcohol Use Disorder; AD, Alcohol Dependent; SNP, Single-Nucleotide Polymorphism; SAGE, Study of Addiction: Genetics and Environment; COGA, Center of Genetics of Alcoholism; MSG2, Molecular Genetics of Schizophrenia; MCTFR, Minnesota Center for Twin and Family Research; MVP, Million Veteran Program EA, European American; AA, African American; LA, Latino American; EAA, East Asian American; SAA, South Asian American; *PECR*, Peroxisomal Trans-2-Enoyl-CoA Reductase; *ADH*, Alcohol Dehydrogenase; *ALDH*, Aldehyde Dehydrogenase; *GCKR*, Glucokinase Regulator; *DRD2*, Dopamine Receptor D2; *SIX3*, SIX Homeobox 3; *SLC39A8*, Solute Carrier Family 39 Member 8; *FTO*, Alpha-Ketoglutarate Dependent Dioxygenase; *RABGAP1L*, RAB GTPase Activating Protein 1 Like; AUDIT-C, Alcohol Use Disorders Identification Test-Consumption.

such, they are involved in many biological processes, such as pain sensitivity, hormone secretion, reward, and the stress response. There are four main types of opioid receptors found in the mammalian central nervous system: mu, kappa, delta, and nociception/orphanin. Opioid receptors are G-coupled protein receptors that mainly interact with alphasubunits of the Gi/o family. The Gi/o-alpha subunit typically inhibits adenylyl cyclase and reduces cyclic adenosine monophosphate, which in turn can decrease neuronal excitability and the activity of cellular phosphatases and kinases. Thus, activation of each of the receptor subtypes generally results in postsynaptic inhibition.

Several families of endogenous opioid peptides bind to these receptors, but the primary ligands are the endorphins, dynorphins, and enkephalins. These three families of peptides have varying degrees of affinity for each of the opioid receptors and none bind to only one receptor subtype. β -endorphins are derived from pro-opiomelanocortin (POMC) and are the primary ligands for the mu-opioid receptor, dynorphins for the kappa-opioid receptors, enkephalins for the delta-opioid receptors, and the peptides nociceptin and orphanin bind to nociceptin/orphanin receptors. It is currently posited that NTX works by occupying mu-opioid receptors preventing the binding of endogenous opioid peptides (e.g., β -endorphin) that are released upon alcohol intake [35], which in turn prevents GABA-mediated release of dopamine in the ventral tegmental area thereby blocking alcohols reinforcing effects [36,37].

As can be seen from Table 2, the most widely studied personalized medicine effect has been for NTX and OPRM1 A118G genotype [38]. This SNP (rs1799971) in the mu-opioid receptor gene (OPRM1) causes an adenine to guanine substitution, altering the amino acid sequence of the receptor and may result in a gain of function of the receptor [39]. In human laboratory studies, G carriers showed greater subjective responses to alcohol, such as greater self-reported feelings of intoxication, stimulation, sedation, and happiness [40]. G carriers who were also heavy drinkers reported greater alcohol-induced craving in a cue reactivity task [41] and self-administered more alcohol relative to A homozygotes [42]. Neuroimaging studies have also reported differences in brain activation and dopamine release. Specifically, G carriers had greater brain activation in the striatum and orbitofrontal cortex in response to alcohol taste [43], while frontostriatal connectivity was reduced [44]. In addition, male G carriers showed increased dopamine release in the striatum following intravenous alcohol self-administration [45].

The findings on whether A118G polymorphisms moderate clinical outcomes have been mixed. Oslin et al. [46] were the first to show that G carriers had lower rates of relapse to heavy drinking and longer time to return to heavy drinking when treated with NTX relative to A homozygotes. Secondary analyses on data from the COMBINE study also showed better clinical outcomes in G carriers. Specifically, G carriers treated with NTX reported fewer heavy drinking days relative to placebo and A homozygotes who were treated with either NTX or placebo [47]. Additionally, G carriers treated with NTX had better clinical outcomes relative to A homozygotes treated with NTX [47]. However, it is important to note that this *OPRM1* SNP did not moderate clinical or neuroimaging outcomes in several investigations using the opioid antagonists NTX [48–54] and

nalmefene [55], disulfiram [54] or acamprosate [49]. In a similar vein, G carriers may have greater susceptibility to relapse once off NTX [53]. While most findings discussed above were from retrospective studies, two randomized clinical trials that prospectively examined the moderating effect of the A118G SNP on responses to NTX failed to find an effect [51,53]. Interestingly, recent work has predicted naltrexone response using a self-report-based 'reward drinking' phenotype, which theoretically overlaps with this genetic profile [56].

Genetic variations in the kappa- and delta-opioid receptor genes (OPRK1 and OPRD1, respectively) have also been investigated as potential moderators of opioid antagonist treatment, albeit to a lesser extent than to OPRM1. Kappa-opioid receptor activation as a result of escalated alcohol consumption and withdrawal contributes to the development of a negative emotional state [14]. Ashenhurst et al. [57] showed that an OPRK1 noncoding SNP (rs997917) resulted in NTX-induced changes in alcohol sedation. Specifically, T homozygotes reported dampened alcohol sedation after NTX versus placebo, and relative to C carriers. Another OPRK1 SNP (rs963549) did not moderate clinical outcomes in investigations using NTX [48] or nalmefene [55]. Like the mu-opioid receptor, alcohol also increases binding of endogenous opioids to delta-opioid receptors leading to increases in dopamine transmission [58]. The OPRD1 SNP (rs465327) has also been shown to moderate NTX responses in the laboratory. A carrier treated with NTX reported lower alcoholinduced stimulation and reduced alcohol craving compared to NTX-treated G homozygotes [57]. Other OPRD1 SNPs (rs2234918 and rs678849) did not moderate treatment responses to NTX [48] or nalmefene [55]. In summary, genetic variation in genes encoding the opioidergic system has received attention as possible moderators of behavioral and clinical responses to opioid antagonists, most notably naltrexone. However, the results of such studies have not been conclusive, particularly regarding a large prospective trial of naltrexone for AUD treatment based on OPRM1 A118G SNP status [51]. While the experimental medicine work was robustly in favor of a pharmacogenetic effect [45,59,60], null findings [61] and effects in the opposite direction [62] were also reported. Nevertheless, it is possible that the pharmacogenetic signal found in tightly controlled experimental medicine models is not strong enough to be detected in clinical care, wherein samples and settings are more diverse.

2.2. Pharmacogenetic studies involving the serotonin system

Dysfunctions in serotonin signaling are implicated in earlyonset AUD [14]. Variants in genes encoding serotonin transporters and receptors have been shown to moderate potential pharmacological treatments for AUD (see Table 2), such as selective-serotonin reuptake inhibitors (sertraline) and serotonin receptor antagonists (ondansetron). A repeat insertion polymorphism in the promoter region (5-HTTLPR) of the serotonin transport gene, *SLC6A4*, results in long (L) and short (S) alleles [63]. These alleles differentially modulate serotonin uptake in the synapse, with the result being a greater density of receptors and, thus, higher reuptake activity in L allele carriers relative to S-allele carriers. Thus, blockade of this

Gene	Variant	Medication (Dosage)/	Duration	Study Design/ Sample	Interaction	Reference [#]
		Pha	rmacogenetic s	tudies involving the	opioid system	
OPRM1	rs1799971	NTX (50–100 mg/day)	12 weeks	RCT; AUD participants: 82 NTX 59 Placebo	G carriers: Lower relapse rates and longer time to return to HD	(Oslin et al., 2003) [46]
	rs1799971; rs17180961; rs648893	NTX (50 mg/day)	13 weeks	RCT; AUD participants: 149 NTX 64 Placebo	None	(Gelernter et al., 2007) [48]
	rs1799971	NTX (100 mg/day)	16 weeks	RCT; AUD participants: 301 NTX 303 Placebo	G carriers: Decreased % of HDD and greater % days abstinent	(Anton et al., 2008) [47]
	rs1799971	Nalmefene (40 mg/day)	28 weeks	RCT; HD participants; 166 Nalmefene 106 Placebo	None	(Arias et al., 2008) [55]
	rs1799971	NTX (50 mg/day)	12 weeks	Open-label trial; Korean AUD participants 32 NTX	G carriers: Longer time to relapse	(Kim et al., 2009) [109]
	rs1799971	NTX (50 mg/day); Acamprosate (1.3–2.0 g/day)	3 weeks	RCT; AUD participants: 52 NTX 56 Acamprosate	None	(Ooteman et al., 2009) [49]
	rs1799971	NTX (50 mg/day)	12 weeks	Open-label trial; AUD Australian participants: 100 NTX	None	(Coller et al., 2011) [50]
	rs1799971	NTX (50 mg/day)	2 weeks	RCT; Problem drinkers: 81 NTX 77 Placebo	G carriers: Attenuation of desire to drink in the evening but no effects on drinking outcomes	(Kranzler et al., 2013) [110]
	rs1799971	NTX (50 mg/day); Disulfiram (250 mg/day)	12 weeks	RCT; AUD participants: 44 NTX 48 Placebo 10 Disulfiram 14 Placebo	None	(Arias et al., 2014) [54]
	rs1799971	NTX (50 mg/day)	12 weeks	RCT: AUD participants: 111 NTX 110 Placebo	None	(Oslin et al., 2015) [51]
	rs1799971	NTX (50–100 mg/day)	12 weeks	Open-label trial; AUD + MDD participants; 108 NTX	None	(Foulds et al., 2015) [52]
	rs1799971	NTX (50 mg/day)	16 weeks	RCT; AUD participants: 73 NTX 73 Placebo	G carriers: Accelerated return to heavy drinking after treatment	(Schacht et al., 2017) [53]
OPRK1	rs963549	NTX (50 mg/day)	13 weeks	RCT; AUD males: 149 NTX 64 Placebo	None	(Gelernter et al., 2007) [48]
	rs963549	Nalmefene (40 mg/day)	28 weeks	RCT; HD participants; 166 Nalmefene 106 Placebo	None	(Arias et al., 2008) [55]
OPRD1	rs678849; rs2234918	NTX (50 mg/day)	13 weeks	RCT; AUD males: 149 NTX 64 Placebo	None	(Gelernter et al., 2007) [48]
	rs2234918; rs678849	Nalmefene (40 mg/day)	28 weeks	RCT; HD participants; 166 Nalmefene 106 Placebo	None	(Arias et al., 2008) [55]
		Pharr	nacogenetic stu	udies involving the s	erotonin system	
SLC6A4	5-HTTLPR;	Sertraline (200 mg/day)	12 weeks	RCT; AUD participants: 63 Sertraline 71 Placebo	LL homozygotes: Less drinking and heavy drinking days in late- onset/low vulnerability AUD individuals	(Kranzler et al., 2011) [66]

Table 2. Pharmacogenetic clinical trials of AUD medications.

48 🔄 S. J. NIETO ET AL.

Table 2. (Continued).

Gene	Variant	Medication (Dosage)/	Medication Duration	Study Design/ Sample	Medication X Genetic Interaction	Reference [#]
	5-HTTLPR; rs1042173	Ondansetron (4 μg/kg/BID	11 weeks	RCT; AUD participants: 140 Ondansetron 143 Placebo	LL homozygotes: fewer drinks per drinking day and greater % days abstinent LL/TT genotype: fewer drinks per drinking day and greater % days abstinent vs other	(Johnson et al., 2011) [67]
HTR3A	rs1150226; rs1176713	Ondansetron (4 μg/kg/BID	11 weeks	RCT; AUD participants: 133 Ondansetron 138 Placebo	genotypes AG or GG genotypes: Fewer drinking days, fewer % heavy drinking days, & more days abstinent Medication effects were enhanced in individuals who possessed one or more of the <i>HTR3A</i> or <i>HTR3B</i> genotypes, along with the <i>SLC6A4</i> -LL/TT	(Johnson et al., 2013) [68]
HTR3B	rs17614942	Ondansetron (4 μg/kg/BID	11 weeks	RCT; AUD participants: 133 Ondansetron 138 Placebo	AC genotype AC genotype: Fewer drinking days, fewer % heavy drinking days, & more days abstinent Medication effects were enhanced in individuals who possessed one or more of the <i>HTR3A</i> or <i>HTR3B</i> genotypes, along with the SLC6A4-LL/TT genotype	(Johnson et al., 2013) [68]
		Pharm	acogenetic stu	dies involving catech	nolamine systems	
DBH	rs1611115	NTX (50 mg/day); Disulfiram (250 mg/day)	12 weeks	RCT; AUD EA participants: 44 NTX 48 Placebo 10 Disulfiram 14 Placebo	T carriers: Higher rates of abstinence from HD on NTX CC homozygotes: Fewer drinks per drinking days on disulfiram	(Arias et al., 2014) [54]
DRD1	rs686	NTX (50 mg/day); Acamprosate (1.3–2.0 g/day)	3 weeks	RCT; AUD participants: 52 NTX	None	(Ooteman et al., 2009) [49]
ANKK1/ DRD2	rs1800497	Bromocriptine (2.5 mg/TID)	6 weeks	RCT; AUD Australian participants: 52 Bromocriptine 31 Placebo	A1 carrier: Lower craving	(Lawford et al., 1995) [69]
	rs1800497	NTX (50 mg/day); Acamprosate (1.3–2.0 g/day)	3 weeks	RCT; AUD participants: 52 NTX 56 Acamprosate	A1 homozygotes: Greater reductions in craving on acamprosate vs NTX A2 homozygotes: Greater reductions in craving on NTX vs acamprosate	(Ooteman et al., 2009) [49]
Pharmacogenetic studies involving the glutamate system						
GRIK1	rs2832407	Topiramate (200 mg/day)	12 weeks	RCT; HD participants: 67 Topiramate 71 Placebo	CC homozygotes: Fewer heavy drinking days and greater days abstinent ^a CC homozygotes: Fewer heavy drinking days 3 and 6 months post- treatment ^b	(Kranzler et al., 2014a, Kranzler et al., 2014b) [71,72]
GRIN2B	C2664T; rs1806201	NTX (50 mg/day); Acamprosate (1.3–2.0 g/day)	3 weeks	RCT; AUD participants: 52 NTX 56 Acamprosate	None	(Ooteman et al., 2009) [49]

(Continued)

Gene	Variant	Medication (Dosage)/	Medication Duration	Study Design/ Sample	Medication X Genetic Interaction	Reference [#]	
	rs2058878; rs2300272	Acamprosate (2g/day)	12 weeks	Open-label trial; AUD participants: 110 Acamprosate	A carriers: Longer abstinence duration during first 3 months of treatment G carriers: Shorter abstinence duration during first 3 months of treatment	(Karpyak et al., 2014) [74]	
		Pha	rmacogenetic s	tudies involving the	GABA system		
GABRA6	T1519C	NTX (50 mg/day); Acamprosate (1.3–2.0 g/day)	3 weeks	RCT; AUD participants: 52 NTX 56 Acamprosate	T carriers: NTX better than acamprosate at reducing craving CC homozygotes: Acamprosate better than NTX at reducing craving	(Ooteman et al., 2009) [49]	
GABRB2	C + 1412T	NTX (50 mg/day); Acamprosate (1.3–2.0 g/day)	3 weeks	RCT; AUD participants: 52 NTX 56 Acamprosate	TT or CC homozygotes: NTX reduced craving better than acamprosate	(Ooteman et al., 2009) [49]	
GABRG2	G315A; rs211013	NTX (50 mg/day); Acamprosate (1.3–2.0 g/day)	3 weeks	RCT; AUD participants: 52 NTX 56 Acamprosate	None	(Ooteman et al., 2009) [49]	
GABBR1	rs29220	Baclofen (30–75 mg/day)	12 weeks	RCT; AUD participants: 26 Baclofen-treated (30mg) 23 Baclofen-treated (75mg) 23 Placebo	CC homozygotes: Decreased time to relapse, DPDD, HDD, and greater % days abstinent	(Morley et al., 2018) [75]	
Pharmacogenetic studies involving an alcohol metabolism gene							
ALDH2	rs671	Disulfiram (200 mg/day)	26 weeks	RCT; AUD participants: 54 Disulfiram- treated 55 Placebo	*2 carriers: Sustained abstinence vs placebo	(Yoshimura et al., 2014) [80]	

OPRM1, Mu Opioid Receptor 1; OPRK1, Kappa Opioid Receptor 1; OPRD1, Delta-Opioid Receptor 1; SLC6A4, Serotonin Transporter; HTR3A, 5-Hydroxytryptamine Receptor 3A; HTR3B, 5-Hydroxytryptamine Receptor 3B; DBH, Dopamine Beta-Hydroxylase; DRD1, Dopamine Receptor D1; DRD2, Dopamine Receptor D2; GRIK1, Glutamate lonotropic Receptor Kainate Type Subunit 1; GRIN2B, Glutamate lonotropic Receptor NMDA Type Subunit 2B; GABRA6, Gamma-Aminobutyric Acid Type A Receptor Alpha6 Subunit; GABRG2, Gamma-Aminobutyric Acid Type A Receptor Gamma2 Subunit; GABBR1, Gamma-Aminobutyric Acid Type A Receptor Rho1 Subunit; ALDH2, Aldehyde Dehydrogenase 2 Family Member; Randomized Controlled Trial; NTX, Naltrexone; BID, Twice a Day; TID, Three Times a Day; AUD, Alcohol Use Disorder; MDD, Major Depressive Disorder; EA, Ancestry; AA, African Ancestry; H, Hispanic Ancestry.

transporter may lead to higher serotonin levels in the synapse leading to increased stimulation of postsynaptic 5-HT3 serotonin receptors, which modulate dopamine release in response to alcohol [64,65]. L homozygotes treated with sertraline reported less drinking and heavy drinking days, specifically in those individuals with a late onset of AUD. Conversely, L homozygotes with early-onset AUD reported more drinking days and heavy drinking days when treated with sertraline relative to placebo [66]. Thus, age of AUD onset combined with 5-HTTLPR genotype may predict which individuals will have better or worse clinical outcomes with SSRI treatment. Additionally, L homozygotes reported fewer drinks per drinking day and a higher percentage of days abstinent when treated with ondansetron compared to placebo, and relative to S carriers. Better clinical outcomes were seen in individuals with both the 5-HTTLPR and SLC6A4 SNP (rs1042173). AUD individuals who possess the LL/TT genotype had the largest reductions in drinks per drinking day and increases in percentage of days abstinent when treated with ondansetron, a specific serotonin-3 (5-HT3) antagonist, relative to other genotype combinations [67].

Table 2. (Continued).

Postsynaptic 5-HT3 receptors are ion channels wherein conduction is dependent on receptor subunits, 5-HT3A and 5-HT3B. The subunits are encoded by the *HTR3A* and *HTR3B* genes. AUD individuals treated with ondansetron and were carriers of one or more of the polymorphisms in *HTR3A* (rs11502260-AG and rs1176713-GG) and *HTR3B* (rs1761492-AC), along with polymorphisms in 5-HTTLPR and *SLC6A4* SNP (rs1042173) reported fewer drinking and heavy drinking days, as well as more days abstinent [68]. Thus, efficacy of serotonergic drugs may be enhanced in AUD individuals who possess a select combination of polymorphisms in serotonergic genes. This is currently being explored in an ongoing pharmacogenetic clinical trial of ondansetron in AUD (ClinicalTrials.gov Identifier: NCT02354703).

2.3. Pharmacogenetic studies involving catecholamines

Alcohol, like most drugs of abuse, increases dopamine release in the ventral striatum. There are five main types of dopamine receptors that are organized into two families, D1-like and D2-like, all of which are G-coupled protein

receptors. The Taq1A polymorphism, located downstream of the dopamine receptor 2 (DRD2) and within the Ankyrin Repeat and Kinase Domain Containing 1 (ANKK1) gene, has been shown to moderate treatments in individuals with AUD (see Table 2). Ooteman et al. [49] found that AUD individuals who were A1 homozygotes benefited more from acamprosate versus NTX on cue-induced craving relative to A2 homozygotes, who benefited more from NTX versus acamprosate. In another study of AUD individuals, A1 carriers treated with bromocriptine, a D2 agonist, had lower craving for alcohol relative to A2 homozygotes [69]. Additionally, dopamine can be converted to the neurotransmitter norepinephrine by the enzyme dopamine betahydroxylase (DBH). A SNP (rs1611115) in the DBH gene has been shown to moderate NTX responses in AUD individuals. Specifically, NTX-treated T carriers had more abstinence from heavy drinking than those with the CC genotype on NTX [54]. Conversely, NTX-treated C homozygotes had lower abstinence rates compared to placebo-treated C homozygotes. Taken together, genetic variants in the catecholamine system may help identify individuals with AUD who will respond better or do worse on NTX relative to placebo.

2.4. *Pharmacogenetic studies involving the glutamate system*

Acute alcohol intake inhibits glutamate neurotransmission by reducing glutamate binding at the NMDA receptor. Indeed, glutamatergic dysregulation has been implicated in the allostatic theory of addiction [70]. Both ionotropic and metabotropic receptors mediate the synaptic effects of glutamate. Pharmacogenetic studies have focused on variants in the subunits of glutamate receptors, namely GluK1 (encoded by GRIK1) and GluN2B (encoded by GRIN2B) (see Table 2). Kranzler and colleagues [71] found that genetic variation in GRIK1 (rs2832407) was associated with AUD and that C homozygotes showed fewer drinking days and more days abstinent when treated with topiramate versus placebo, whereas topiramate was not effective over placebo in A carriers. Furthermore, C homozygotes continued to have fewer drinking days relative to A carriers when assessed 3- and 6-months post-treatment [72]. Ray et al. [73] examined three GRIK1 SNPs, including rs2832407, as potential moderators of severity of topiramate side effects. Results from this study showed that C homozygotes had lower adverse side effects and lower topiramate serum levels relative to A carriers.

In addition, two SNPs in *GRIN2B* may moderate the efficacy of acamprosate. G allele carriers (resulting from rs2300272) had a shorter duration of abstinence, while A carriers (rs2058878) had a longer abstinence duration during acamprosate treatment [74]. However, a separate *GRIN2B* SNP (C2664T) did not moderate treatment responses to NTX or acamprosate [49]. Overall, these genetic variants modulate the pharmacokinetic properties, as well as the therapeutic efficacy of glutamatergic modulating medications. The genetic variant in *GRIK1* as a moderator of topiramate responses is encouraging and is further being examined in an ongoing prospective clinical trial (ClinicalTrials. gov Identifier: NCT02371889).

2.5. Pharmacogenetic studies on the GABA system

Alcohol modulates GABA activity directly at receptors and indirectly via stimulation of GABA release. The GABA system contains both ionotropic (GABA_A) and metabotropic receptors (GABA_B). Pharmacogenetic studies have focused on genes that encode subunits of the GABA_A receptor, GABRA6 and GABRG2, as well as a gene that encodes a subunit of the GABA_B receptor, GABBR1 (see Table 2). NTX and acamprosate-induced reductions in alcohol craving were dependent on GABRA6 genotype (T + 1519C) [49]. Acamprosate had greater efficacy on cue-induced craving in C homozygotes, while NTX had better efficacy in A carriers. This study also examined an SNP in GABRG2 (G + 3145A) that did not moderate NTX or acamprosate effects on cue-induced craving [49]. Variation in GABBR1 (rs29220) moderates treatment response to baclofen, a selective GABA_B receptor agonist. Specifically, C homozygotes with AUD reported greater percentages of days abstinent, less drinking days, and an extended time to relapse compared to G carriers [75]. In sum, genetic variation in GABAergic signaling may be especially relevant to the subjective experience of alcohol [76] and may be useful in predicting treatment response, including clinical response to non-pharmacological treatments, such as Twelve Step Facilitation [77,78].

2.6. *Pharmacogenetic studies involving alcohol metabolism enzymes*

Several candidates and genome-wide association studies implicate alcohol metabolism genes in risk for AUD. Unfortunately, few studies have examined the influence of these genes on AUD medications. For the most part, alcohol metabolism occurs in the liver wherein several enzymes oxidize alcohol. Alcohol dehydrogenase converts alcohol to acetaldehyde, a potentially toxic metabolite, which is usually rapidly converted to acetic acid by the enzyme acetaldehyde dehydrogenase. Acetaldehyde dehydrogenase (ALDH) occurs in several genetic forms with differential activity. More than one third of individuals with East Asian ancestry inherit the inactive form of ALDH2 [79]. For these individuals, alcohol consumption increases levels of acetaldehyde, causing several negative physiological consequences, such as nausea and vomiting. Thus, inactive ALDH2 may enhance treatment response to drugs that block acetaldehyde metabolism, such as disulfiram. Yoshimura et al. [80] found that alcohol dependent individuals (ICD-9 criteria) with the inactive ALDH2 genotype had higher rates of abstinence from alcohol when treated with disulfiram relative to carriers treated with placebo. Prospective clinical studies with larger sample sizes are needed to examine the influence of alcohol metabolism genes.

3. Recommendations for future pharmacogenetics of AUD studies

Nearly all the pharmacogenetic clinical studies discussed above were retrospective investigations, wherein individuals were randomized without regard for genotype. Although these studies are an important contribution to the path toward personalized medicine, prospectively stratifying individuals by genotype rather than phenotype is ideal, especially in complex disorders, like AUD. This method would allow researchers to identify whether individuals with specific genotypes present with clinically identifiable AUD phenotypes. While this approach does not require a complete understanding of the etiology of AUD [81], it does require a comprehensive phenotyping of AUD based on genetic information [82]. Thus, continuing refinement of how AUD phenotypes are defined via reverse phenotyping might also be required to improve our understanding of the genetics of AUD [83]. Reverse phenotyping uses genetic markers to identify novel phenotypes by determining phenotypic groupings that are distinguished by higher rates of shared alleles compared to what is seen in traditional diagnostic criteria [83]. Taken together, these approaches have had a crucial role in understanding the genetic architecture of other psychiatric disorders, such as bipolar disorder [84], schizophrenia [85], and developmental disorder [86].

Our understanding of the neurobiology of addiction has grown exponentially over the last few decades. Drug and alcohol addiction impact brain regions that regulate reward, stress, and executive function systems [87]. These neuroadaptations are in line with a well-established heuristic framework that conceptualizes the progression from recreational drug/alcohol use to addiction [70]. This framework consists of three addiction stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation stage. While the amount of genomic data is growing rapidly, it is unclear how the genetic variants identified fit into the proposed addiction cycle. To address this issue, Reilly and colleagues [14] mined existing GWAS of AUD data to generate biological hypotheses for genetic variants (largely non-significant in GWAS analyses) that may play a role within one or more stages of the addiction cycle. Interestingly, none of the GWASidentified variants overlapped with pharmacogenetic clinical studies discussed above. However, a locus in the serotonin receptor (HTR1A) gene was implicated in the preoccupation/ anticipation stage of the addiction cycle, wherein compulsive alcohol seeking is a predominate feature. Given that genetic variations in serotonin transporter and receptor genes moderate sertraline and ondansetron efficacy [67,68,88], the utility of these medications might be further enhanced when clinical outcomes that are reflective of the preoccupation/ anticipation stage are examined. Further pharmacogenetic investigations that consider associations between genetic variants and stages of the addiction cycle are warranted.

Another promising area of research involves the mapping of genetic variation onto neurocircuitry implicated in AUD. Initial validation for this approach comes from the study of postmortem human brains, from which a whole-brain genome-wide gene expression atlas has been created [89]. These maps were used to evaluate the genetic underpinnings of resting-state functional connectivity [90], which reflects the coherence between brain regions during a task-negative, resting state [91]. Resting-state functional network strength was correlated with the expression of a set of genes linked to ion channel activity and synaptic function. As aberrant connectivity patterns are associated with several psychiatric disorders, including AUD, extending this research into populations with AUD will provide novel insights into the gene networks that are causal to AUD.

The growing popularity of personal genomics and biotechnology companies over the last decade has allowed for the use of large population-based cohorts to examine the genetic factors that contribute to alcohol problems. For example, a GWAS of the Alcohol Use Disorder Identification Test (AUDIT) was conducted using a sample of 23,328 individuals from a private genetics company (23andMe, Inc.) [92]. The AUDIT is a commonly used measure to assess hazardous patterns of alcohol consumption in the past year. Although no genetic loci reached the statistical significance threshold commonly used in GWAS studies, one of the most significant associations was in the alcohol metabolizing ADH1C gene (rs141973904), a finding that complements previous GWAS of AUD. In a followup study, a GWAS meta-analysis of AUDIT total scores was performed using the 23andMe cohort and another large population-based cohort (UK Biobank) leading to a sample of 141,932 individuals [30]. This investigation identified 10 associated risk alleles, some of which were loci that corroborated GWAS of AUD and other loci were novel associations. While these studies demonstrate the utility of large population-based cohorts, it is important to note that these research participants were not screened for clinical AUD diagnostic criteria and, thus, the identified genetic variants may better generalize to alcohol endophenotypes instead of reflecting AUD. However, large-scale biobanks such as the Million Veteran Program can link genotypes to health information documented in electronic health records. Using this approach, a recent GWAS of 274,424 ethnically diverse individuals found that genetic variants associated with alcohol consumption and AUD can be differentiated [29]. Thus, elucidating the genetic variants that contribute to AUD versus alcohol consumption using larger population-based cohorts may help identify potential targets for medication development.

4. Expert opinion

The literature on the pharmacogenetics of AUD has yielded promising results; however, there has been a lack of replication across studies and studies using prospective genotyping have yielded null results. Subsequently, the clinical utility of pharmacogenetics in AUD populations is uncertain at this time. An important consideration in pharmacogenetic research is the fact that sample sizes are limited by the scope of clinical trials; yet, GWAS-level studies of treatment response may be possible post hoc. Indeed, these analyses may be feasible using data from electronic health records [33,93]. For example, using propensity score models and matching, electronic health records were used to determine that gabapentin decreased AUDIT-C scores in AUD patients relative to matched unexposed patients [94]. A similar approach can be used to support a GWAS of treatment response to AUD medications. Using mechanistic studies and harvesting findings from GWAS represents an important way in which relevant AUD-genetics findings can be translated into clinical applications through precision medicine. In addition, it is encouraging that there are several ongoing prospective clinical trials on the pharmacogenetics of AUD medications, some of which are assessing the impact of combinations of

genetic variants. We recommend that future work considers reverse translating of GWAS-identified genetic variants to AUD phenotypes, mapping genes to phases of the addiction cycle, mapping genes to neural circuits, and utilizing large population-based samples. Such information will improve our understanding of the genetic architecture of AUD, leading to more effective personalized treatment strategies.

Funding

This work was supported by grants from the National Institute on Alcohol Abuse and Alcoholism to SJN (F31AA026495), ENG (F32AA027699), and LAR (K24AA025704).

Declaration of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reviewers Disclosure

Peer reviewers on this manuscript have no relevant financial relationships or otherwise to disclose.

References

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

- 1. APA. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.
- SAMHSA. Substance Abuse and Mental Health Services Administration. 2015 National Survey on Drug Use and Health (NSDUH). Table 5.6A—Substance Use Disorder in Past Year among Persons Aged 18 or Older, by Demographic Characteristics: numbers in Thousands, 2014 and 2015; 2015. [cited 2019 Jun 10]. Available from: https://www.samhsa.gov/data/sites/default/files/NSDUH-DetTabs-2015/NSDUH-DetTabs-2015/NSDUH-DetTabs-2015. htm#tab5-6a.
- Mokdad AH, Marks JS, Stroup DF, et al. Correction: actual causes of death in the United States, 2000. JAMA. 2005 Jan;293(3):293–294.
- Sacks JJ, Gonzales KR, Bouchery EE, et al. 2010 National and state costs of excessive alcohol consumption. Am J Prev Med. 2015 Nov;49(5):e73–9.
- Zindel LR, Kranzler HR. Pharmacotherapy of alcohol use disorders: seventy-five years of progress. J Stud Alcohol Drugs Suppl. 2014;75 (Suppl 17):79–88.
- 6. Suh JJ, Pettinati HM, Kampman KM, et al. The status of disulfiram: a half of a century later. J Clin Psychopharmacol. 2006;26 (3):290–302.
- Skinner MD, Lahmek P, Pham H, et al. Disulfiram efficacy in the treatment of alcohol dependence: a meta-analysis. PLoS ONE. 2014;9(2):e87366.
- Littleton JM. Acamprosate in alcohol dependence: implications of a unique mechanism of action. J Addict Med. 2007;1(3):115–125.
- 9. Swift RM, Aston ER. Pharmacotherapy for alcohol use disorder: current and emerging therapies. Harv Rev Psychiatry. 2015 Mar-Apr;23(2):122–133.
- Ray LA, Chin PF, Miotto K. Naltrexone for the treatment of alcoholism: clinical findings, mechanisms of action, and pharmacogenetics. CNS Neurol Disord Drug Targets. 2010 Mar;9 (1):13–22.

- 11. Moos RH, Moos BS. Rates and predictors of relapse after natural and treated remission from alcohol use disorders. Addiction. 2006 Feb;101(2):212–222.
- 12. Schuckit MA. Alcohol-use disorders. Lancet. 2009 Feb;373 (9662):492–501.
- 13. Yardley MM, Ray LA. Medications development for the treatment of alcohol use disorder: insights into the predictive value of animal and human laboratory models. Addict Biol. 2017 May;22 (3):581–615.
- 14. Reilly MT, Noronha A, Goldman D, et al. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology. 2017;122:3–21.
- 15. Bierut LJ, Saccone NL, Rice JP. et al. Defining alcohol-related phenotypes in humans. The collaborative study on the genetics of Alcoholism. Alcohol Res & Health. 2002;26(3):208–213.
- Foroud T, Edenberg HJ, Goate A, et al. Alcoholism susceptibility loci: confirmation studies in a replicate sample and further mapping. Alcohol Clin Exp Res. 2000 Jul;24(7):933–945.
- Edenberg HJ, Foroud T. The genetics of alcoholism: identifying specific genes through family studies. Addict Biol. 2006 Sep;11 (3–4):386–396.
- Hines LM, Ray L, Hutchison K, et al. Alcoholism: the dissection for endophenotypes. Dialogues Clin Neurosci. 2005;7(2):153–163.
- 19. Kranzler HR, Edenberg HJ. Pharmacogenetics of alcohol and alcohol dependence treatment. Curr Pharm Des. 2010;16(19):2141–2148.
- Duncan LE, Ostacher M, Ballon J. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacol. 2019;44(9):1518–1523.
- 21. Edenberg HJ, Gelernter J, Agrawal A. Genetics of alcoholism. Curr Psychiatry Rep. 2019 Mar 9;21(4):26.
- 22. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009 Oct 8;461(7265):747–753.
- Golan D, Lander ES, Rosset S. Measuring missing heritability: inferring the contribution of common variants. Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5272–81.
- 24. Munoz M, Pong-Wong R, Canela-Xandri O, et al. Evaluating the contribution of genetics and familial shared environment to common disease using the UK Biobank. Nat Genet. 2016 Sep;48 (9):980–983.
- 25. Zuk O, Hechter E, Sunyaev SR, et al. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1193–1198.
- 26. Zuk O, Schaffner SF, Samocha K, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E455–E464.
- Kos MZ, Yan J, Dick DM, et al. Common biological networks underlie genetic risk for alcoholism in African- and European-American populations. Genes Brain Behav. 2013 Jul;12(5):532–542.
- 28. Walters RK, Polimanti R, Johnson EC, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018 Dec;21(12):1656–1669.
- •• Of considerable importance. Large GWAS of AUD.
- 29. Kranzler HR, Zhou H, Kember RL, et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019 Apr 2;10 (1):1499.
- •• Of considerable importance. Large GWAS of AUD.
- Sanchez-Roige S, Palmer AA, Fontanillas P, et al. Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. Am J Psychiatry. 2019 Feb 1;176(2):107–118.
- Hart AB, Kranzler HR. Alcohol dependence genetics: lessons learned from genome-wide association studies (GWAS) and Post-GWAS analyses. Alcohol Clin Exp Res. 2015 Aug;39(8):1312–1327.
- 32. Agrawal A, Verweij KJ, Gillespie NA, et al. The genetics of addiction-a translational perspective. Transl Psychiatry. 2012 Jul;17(2):e140.
- 33. Sanchez-Roige S, Palmer AA, Clarke T-K. Recent efforts to dissect the genetic basis of alcohol use and abuse. Biol Psychiatry. 2019;19:31711–1.

- Compton WM, Dawson DA, Goldstein RB, et al. Crosswalk between DSM-IV dependence and DSM-5 substance use disorders for opioids, cannabis, cocaine and alcohol. Drug Alcohol Depend. 2013 Sep 1;132(1–2):387–390.
- 35. Anton RF. Naltrexone for the management of alcohol dependence. N Engl J Med. 2008;359(7):715–721.
- Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59(1):29–53.
- Kreek MJ. Opiates, opioids and addiction. Mol Psychiatry. 1996 Jul;1 (3):232–254.
- Ray LA, Barr CS, Blendy JA, et al. The role of the Asn40Asp polymorphism of the mu opioid receptor gene (OPRM1) on alcoholism etiology and treatment: a critical review. Alcohol Clin Exp Res. 2012 Mar;36(3):385–394.
- Huang P, Chen C, Mague SD, et al. A common single nucleotide polymorphism A118G of the mu opioid receptor alters its N-glycosylation and protein stability. Biochem J. 2012 Jan 1;441 (1):379–386.
- Ray LA, Hutchison KE. A polymorphism of the mu-opioid receptor gene (OPRM1) and sensitivity to the effects of alcohol in humans. Alcohol Clin Exp Res. 2004 Dec;28(12):1789–1795.
- 41. van den Wildenberg E, Wiers RW, Dessers J, et al. A functional polymorphism of the mu-opioid receptor gene (OPRM1) influences cue-induced craving for alcohol in male heavy drinkers. Alcohol Clin Exp Res. 2007 Jan;31(1):1–10.
- 42. Hendershot CS, Claus ED, Ramchandani VA. Associations of OPRM1 A118G and alcohol sensitivity with intravenous alcohol self-administration in young adults. Addict Biol. 2016 Jan;21 (1):125–135.
- 43. Filbey FM, Ray L, Smolen A, et al. Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcohol Clin Exp Res. 2008 Jul;32 (7):1113–1123.
- 44. Ray LA, Courtney KE, Hutchison KE, et al. Initial evidence that OPRM1 genotype moderates ventral and dorsal striatum functional connectivity during alcohol cues. Alcohol Clin Exp Res. 2014 Jan;38 (1):78–89.
- 45. Ramchandani VA, Umhau J, Pavon FJ, et al. A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry. 2011 Aug;16(8):809–817.
- Oslin DW, Berrettini W, Kranzler HR, et al. A functional polymorphism of the mu-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology. 2003 Aug;28 (8):1546–1552.
- Of importance. First pharmacogenetic study of naltrexone and mu-opioid receptor gene.
- 47. Anton RF, Oroszi G, O'Malley S, et al. An evaluation of mu-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch Gen Psychiatry. 2008 Feb;65 (2):135–144.
- Gelernter J, Gueorguieva R, Kranzler HR, et al. Opioid receptor gene (OPRM1, OPRK1, and OPRD1) variants and response to naltrexone treatment for alcohol dependence: results from the VA Cooperative Study. Alcohol Clin Exp Res. 2007 Apr;31(4):555–563.
- 49. Ooteman W, Naassila M, Koeter MW, et al. Predicting the effect of naltrexone and acamprosate in alcohol-dependent patients using genetic indicators. Addict Biol. 2009 Jul;14(3):328–337.
- Coller JK, Cahill S, Edmonds C, et al. OPRM1 A118G genotype fails to predict the effectiveness of naltrexone treatment for alcohol dependence. Pharmacogenet Genomics. 2011 Dec;21(12):902–905.
- Oslin DW, Leong SH, Lynch KG, et al. Naltrexone vs Placebo for the treatment of alcohol dependence: a randomized clinical trial. JAMA Psychiatry. 2015 May;72(5):430–437.
- -- Of considerable importance. Prospective study of naltrexone and mu-opioid receptor gene.
- Foulds JA, Ton K, Kennedy MA, et al. OPRM1 genotype and naltrexone response in depressed alcohol-dependent patients. Pharmacogenet Genomics. 2015 May;25(5):270–273.

- 53. Schacht JP, Randall PK, Latham PK, et al. Predictors of naltrexone response in a randomized trial: reward-related brain activation, OPRM1 genotype, and smoking status. Neuropsychopharmacology. 2017 Dec;42(13):2640–2653.
- Of considerable importance. Prospective study of naltrexone and mu-opioid receptor gene.
- Arias AJ, Gelernter J, Gueorguieva R, et al. Pharmacogenetics of naltrexone and disulfiram in alcohol dependent, dually diagnosed veterans. Am J Addict. 2014 May–Jun;23(3):288–293.
- 55. Arias AJ, Armeli S, Gelernter J, et al. Effects of opioid receptor gene variation on targeted nalmefene treatment in heavy drinkers. Alcohol Clin Exp Res. 2008 Jul;32(7):1159–1166.
- Mann K, Roos CR, Hoffmann S, et al. Precision medicine in alcohol dependence: a controlled trial testing pharmacotherapy response among reward and relief drinking phenotypes. Neuropsychopharmacology. 2018 Mar;43(4):891–899.
- Of importance. Identifies a behavioral marker of naltrexone response.
- 57. Ashenhurst JR, Bujarski S, Ray LA. Delta and kappa opioid receptor polymorphisms influence the effects of naltrexone on subjective responses to alcohol. Pharmacol Biochem Behav. 2012 Dec;103 (2):253–259.
- 58. Koob GF, Roberts AJ, Schulteis G, et al. Neurocircuitry targets in ethanol reward and dependence. Alcohol Clin Exp Res. 1998 Feb;22 (1):3–9.
- Bilbao A, Robinson JE, Heilig M, et al. A pharmacogenetic determinant of mu-opioid receptor antagonist effects on alcohol reward and consumption: evidence from humanized mice. Biol Psychiatry. 2015 May 15;77(10):850–858.
- 60. Ray R, Ruparel K, Newberg A, et al. Human Mu Opioid Receptor (OPRM1 A118G) polymorphism is associated with brain mu-opioid receptor binding potential in smokers. Proc Natl Acad Sci U S A. 2011 May 31;108(22):9268–9273.
- 61. Ray LA, Green R, Roche DJO, et al. Pharmacogenetic effects of naltrexone in individuals of east asian descent: human laboratory findings from a randomized trial. Alcohol Clin Exp Res. 2018 Mar;42(3):613–623.
- McGeary JE, Monti PM, Rohsenow DJ, et al. Genetic moderators of naltrexone's effects on alcohol cue reactivity. Alcohol Clin Exp Res. 2006 Aug;30(8):1288–1296.
- Lesch KP, Bengel D, Heils A, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996 Nov 29;274(5292):1527–1531.
- Wozniak KM, Pert A, Linnoila M. Antagonism of 5-HT3 receptors attenuates the effects of ethanol on extracellular dopamine. Eur J Pharmacol. 1990 Oct 9;187(2):287–289.
- 65. Yoshimoto K, Yayama K, Sorimachi Y, et al. Possibility of 5-HT3 receptor involvement in alcohol dependence: a microdialysis study of nucleus accumbens dopamine and serotonin release in rats with chronic alcohol consumption. Alcohol Clin Exp Res. 1996 Dec;20(9Suppl):311a–319a.
- 66. Kranzler HR, Armeli S, Tennen H, et al. A double-blind, randomized trial of sertraline for alcohol dependence: moderation by age of onset [corrected] and 5-hydroxytryptamine transporter-linked promoter region genotype. J Clin Psychopharmacol. 2011 Feb;31(1):22–30.
- Johnson BA, Ait-Daoud N, Seneviratne C, et al. Pharmacogenetic approach at the serotonin transporter gene as a method of reducing the severity of alcohol drinking. Am J Psychiatry. 2011 Mar;168 (3):265–275.
- 68. Johnson BA, Seneviratne C, Wang XQ, et al. Determination of genotype combinations that can predict the outcome of the treatment of alcohol dependence using the 5-HT(3) antagonist ondansetron. Am J Psychiatry. 2013 Sep;170(9):1020–1031.
- 69. Lawford BR, Young RM, Rowell JA, et al. Bromocriptine in the treatment of alcoholics with the D2 dopamine receptor A1 allele. Nat Med. 1995 Apr;1(4):337–341.
- Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–238.
- Kranzler HR, Covault J, Feinn R, et al. Topiramate treatment for heavy drinkers: moderation by a GRIK1 polymorphism. Am J Psychiatry. 2014 Apr;171(4):445–452.

- Kranzler HR, Wetherill R, Feinn R, et al. Posttreatment effects of topiramate treatment for heavy drinking. Alcohol Clin Exp Res. 2014 Dec;38(12):3017–3023.
- 73. Ray LA, Miranda R Jr., MacKillop J, et al. A preliminary pharmacogenetic investigation of adverse events from topiramate in heavy drinkers. Exp Clin Psychopharmacol. 2009 Apr;17(2):122–129.
- Karpyak VM, Biernacka JM, Geske JR, et al. Genetic markers associated with abstinence length in alcohol-dependent subjects treated with acamprosate. Transl Psychiatry. 2014 Oct;7(4):e462.
- Morley KC, Luquin N, Baillie A, et al. Moderation of baclofen response by a GABAB receptor polymorphism: results from the BacALD randomized controlled trial. Addiction. 2018 Dec;113(12):2205–2213.
- Schuckit MA. A critical review of methods and results in the search for genetic contributors to alcohol sensitivity. Alcohol Clin Exp Res. 2018 May;42(5):822–835.
- Russell MA, Schlomer GL, Cleveland HH, et al. PROSPER intervention effects on adolescents' alcohol misuse vary by GABRA2 genotype and age. Prev Sci. 2018 Jan;19(1):27–37.
- Bauer LO, Covault J, Harel O, et al. Variation in GABRA2 predicts drinking behavior in project MATCH subjects. Alcohol Clin Exp Res. 2007 Nov;31(11):1780–1787.
- 79. Eng MY, Luczak SE, Wall TL. ALDH2, ADH1B, and ADH1C genotypes in Asians: a literature review. Alcohol Res & Health. 2007;30 (1):22–27.
- Yoshimura A, Kimura M, Nakayama H, et al. Efficacy of disulfiram for the treatment of alcohol dependence assessed with a multicenter randomized controlled trial. Alcohol Clin Exp Res. 2014 Feb;38 (2):572–578.
- Demkow U, Wolańczyk T. Genetic tests in major psychiatric disorders-integrating molecular medicine with clinical psychiatry-why is it so difficult? Transl Psychiatry. 2017;7(6):e1151–e1151.
- Stessman HA, Bernier R, Eichler EE. A genotype-first approach to defining the subtypes of a complex disease. Cell. 2014 Feb 27;156 (5):872–877.
- Schulze TG, McMahon FJ. Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum Hered. 2004;58(3–4):131–138.
- Hodge JC, Mitchell E, Pillalamarri V, et al. Disruption of MBD5 contributes to a spectrum of psychopathology and neurodevelopmental abnormalities. Mol Psychiatry. 2014 Mar;19(3):368–379.
- Sahoo T, Theisen A, Rosenfeld JA, et al. Copy number variants of schizophrenia susceptibility loci are associated with a spectrum of speech and developmental delays and behavior problems. Genet Med. 2011 Oct;13(10):868–880.
- de Goede C, Yue WW, Yan G, et al. Role of reverse phenotyping in interpretation of next generation sequencing data and a review of INPP5E related disorders. Eur J Paediatric Neurol. 2016 Mar;20 (2):286–295.
- George O, Koob GF. Individual differences in the neuropsychopathology of addiction. Dialogues Clin Neurosci. 2017 Sep;19 (3):217–229.
- Kranzler HR, Armeli S, Tennen H. Post-treatment outcomes in a double-blind, randomized trial of sertraline for alcohol dependence. Alcohol Clin Exp Res. 2012 Apr;36(4):739–744.
- Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012 Sep 20;489(7416):391–399.
- Richiardi J, Altmann A, Milazzo AC, et al. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science. 2015 Jun 12;348(6240):1241–1244.
- Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007 Sep;8(9):700–711.
- 92. Sanchez-Roige S, Fontanillas P, Elson SL, et al. Genome-wide association study of alcohol use disorder identification test (AUDIT)

scores in 20 328 research participants of European ancestry. Addict Biol. 2019;24(1):121–131.

- Sanchez-Roige S, Palmer AA. Electronic health records are the next frontier for the genetics of substance use disorders. Trends Genet. 2019;35(5):317–318.
- 94. Rentsch CT, Fiellin DA, Bryant KJ, et al. Association between gabapentin receipt for any indication and alcohol use disorders identification test-consumption scores among clinical subpopulations with and without alcohol use disorder. Alcohol Clin Exp Res. 2019;43(3):522–530.
- 95. Treutlein J, Cichon S, Ridinger M, et al. Genome-wide association study of alcohol dependence. Arch Gen Psychiatry. 2009 Jul;66 (7):773–784.
- Bierut LJ, Agrawal A, Bucholz KK, et al. A genome-wide association study of alcohol dependence. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5082–5087.
- Edenberg HJ, Koller DL, Xuei X, et al. Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol Clin Exp Res. 2010 May;34(5):840–852.
- Kendler KS, Kalsi G, Holmans PA, et al. Genomewide association analysis of symptoms of alcohol dependence in the molecular genetics of schizophrenia (MGS2) control sample. Alcohol Clin Exp Res. 2011 May;35(5):963–975.
- 99. Heath AC, Whitfield JB, Martin NG, et al. A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications. Biol Psychiatry. 2011 Sep 15;70 (6):513–518.
- 100. Frank J, Cichon S, Treutlein J, et al. Genome-wide significant association between alcohol dependence and a variant in the ADH gene cluster. Addict Biol. 2012 Jan;17(1):171–180.
- Zuo L, Gelernter J, Zhang CK, et al. Genome-wide association study of alcohol dependence implicates KIAA0040 on chromosome 1q. Neuropsychopharmacology. 2012 Jan;37(2):557–566.
- 102. Wang JC, Foroud T, Hinrichs AL, et al. A genome-wide association study of alcohol-dependence symptom counts in extended pedigrees identifies C15orf53. Mol Psychiatry. 2013 Nov;18 (11):1218–1224.
- McGue M, Zhang Y, Miller MB, et al. A genome-wide association study of behavioral disinhibition. Behav Genet. 2013 Sep;43 (5):363–373.
- 104. Park BL, Kim JW, Cheong HS, et al. Extended genetic effects of ADH cluster genes on the risk of alcohol dependence: from GWAS to replication. Hum Genet. 2013 Jun;132(6):657–668.
- 105. Quillen EE, Chen XD, Almasy L, et al. ALDH2 is associated to alcohol dependence and is the major genetic determinant of "daily maximum drinks" in a GWAS study of an isolated rural Chinese sample. Am J Med Genet B Neuropsychiatr Genet. 2014;165b(2:103–110.
- 106. Gelernter J, Kranzler HR, Sherva R, et al. Genome-wide association study of alcohol dependence: significant findings in African- and European-Americans including novel risk loci. Mol Psychiatry. 2014 Jan;19(1):41–49.
- 107. Lai D, Wetherill L, Bertelsen S, et al. Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria. Genes Brain Behav. 2019;18(6):e12579.
- 108. Sun Y, Chang S, Wang F, et al. Genome-wide association study of alcohol dependence in male Han Chinese and cross-ethnic polygenic risk score comparison. Transl Psychiatry. 2019;9(1):249.
- 109. Kim SG, Kim CM, Choi SW, et al. A micro opioid receptor gene polymorphism (A118G) and naltrexone treatment response in adherent Korean alcohol-dependent patients. Psychopharmacology (Berl). 2009 Jan;201(4):611–618.
- 110. Kranzler HR, Armeli S, Covault J, et al. Variation in OPRM1 moderates the effect of desire to drink on subsequent drinking and its attenuation by naltrexone treatment. Addict Biol. 2013 Jan;18 (1):193–201.