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Abstract: 

Given the significant cost of alcohol use disorder, identifying risk factors for alcohol seeking represents a 

research priority. Prominent addiction theories emphasize the role of motivation in the alcohol seeking 

process, which has largely been studied using preclinical models. In order to bridge the gap between 

preclinical and clinical studies, this study examined predictors of motivation for alcohol self-

administration using a novel paradigm. Heavy drinkers (n=67) completed an alcohol infusion consisting 

of an alcohol challenge (target breath alcohol = 60mg%) and a progressive-ratio alcohol self-

administration paradigm (maximum breath alcohol 120mg%; ratio requirements range = 20-3,139 

response). Growth curve modeling was used to predict breath alcohol trajectories during alcohol self-

administration. K-means clustering was used to identify motivated (n=41) and unmotivated (n=26) self-

administration trajectories. The data was analyzed using two approaches: a theory-driven test of a-priori 

predictors and a data-driven, machine learning model. In both approaches, steeper delay discounting, 

indicating a preference for smaller, sooner rewards, predicted motivated alcohol seeking. The data-driven 

approach further identified phasic alcohol craving as a predictor of motivated alcohol self-administration. 

Additional application of this model to AUD translational science and treatment development appear 

warranted. 
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Introduction 

Alcohol use disorder (AUD) is a chronic relapsing condition, defined by consumption that 

continues despite significant physical, social, economic, and legal consequences. AUD is a significant 

public health concern; in the United States, over 15 million adults met criteria for an AUD and an 

estimated 623,000 adolescents ages 12-17 had an AUD1. Moreover, almost 27% of adults reported 

engaging in a binge drinking episode in the past month, with 7% reporting past month heavy drinking, 

defined as 5 or more binge drinking episodes in one month2. Given the significant cost of AUD to 

afflicted individuals and society at large, identifying risk factors for alcohol seeking in heavy drinkers and 

in individuals with AUD represents a research priority.   

 Prominent theories of addiction emphasize the critical role of motivation in the alcohol/drug 

seeking process, especially in early stages of the addiction cycle3,4. In preclinical animal models, 

motivation for alcohol is traditionally measured through behavioral assays that are often disparate from 

the human and clinical presentations. A common method for measuring alcohol’s reinforcing value is the 

progressive ratio (PR) schedule, in which rodents must press a lever in increasing increments to earn an 

alcohol reward (i.e. a PR4 schedule would require 4, 8, 12, etc. lever presses for each subsequent alcohol 

reward). The maximum number of lever presses for the last complete reward trial is referred to as the 

breakpoint, which measures the amount of effort a subject (i.e., animal) is willing to perform to earn the 

reward. Providing validity for this approach, high-drinking rats have a higher breakpoint and consume 

more alcohol than low drinking rats in a PR design5. Importantly, PR breakpoint is sensitive to AUD 

pharmacotherapy effects, such that increasing doses of effective medication can decrease PR breakpoint, 

indicating that the medication decreases motivation for alcohol6. While much progress has been made in 

the preclinical domain using animal models of motivation for alcohol, translation of these models to 

humans has been limited. 

 Recently, the field has been moving towards translational research in AUD in which controlled 

laboratory models can be used to identify predictors of risk and vulnerability factors for AUD. In this 
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vein, a recent experimental study investigated if risk factors for AUD could predict rates of binge 

drinking during a controlled intravenous alcohol self-administration paradigm, albeit without a PR 

component7. Specifically, this study found that family history of alcoholism, male sex, and delay 

discounting impulsivity were associated with higher rates of binge drinking, defined as reaching a blood 

alcohol content of 80 mg%. Further, individuals who met all three risk factors had higher rates of binge 

drinking during the self-administration paradigm compared to the lowest risk group, who did not have 

any AUD risk factors7, suggesting an additive effect. While this was an important study in validating 

alcohol self-administration through well-established AUD risk factors, models incorporating a PR 

schedule have arguably greater translational value. 

 In order to bridge the gap between preclinical and clinical studies of motivation for alcohol, the 

present study examines predictors of motivation for alcohol self-administration using a novel PR 

paradigm8. First, we used growth modeling and K-means clustering to identify motivated and 

unmotivated self-administration trajectories phenotyped in the laboratory. Then we used two analytic 

approaches to identify predictors of motivation for alcohol self-administration. First we conducted a 

theory-driven test of a-priori predictors, namely family history, sex, and impulsivity, selected to replicate 

and extend upon previous findings of vulnerability to alcohol bingeing7, using traditional inferential 

statistics (i.e., logistic regression). Second, we used a data-driven, machine learning approach, i.e. random 

forest model. Machine learning models prioritize the ability to predict future outcomes over creating 

perfectly fitting models for the data at hand9. This results in models which are more generalizable to 

future observations, which fits well with our goal of identifying predictors of motivation for alcohol-

seeking in clinical samples. Together, this approach combines novel experimental methods (PR self-

administration in humans) with advanced quantitative methods (growth modeling, random forest 

modeling) to extend the literature on determinants of motivation for alcohol seeking in humans. The 

combination of theory testing and data-driven modeling provides a balanced approach to this critical 

scientific question. 
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Method 

Participants 

This study was approved by the UCLA Institutional Review Board. Non-treatment-seeking heavy 

drinkers were recruited between April 2015 and August 2016 from the Los Angeles community through 

fliers and online advertisements. Initial eligibility screening was conducted via online and telephone 

surveys and was followed by an in-person screening session. After providing written informed consent, 

participants were breathalyzed, provided urine for toxicology screening, and completed a battery of self-

report questionnaires and interviews. All participants were required to have a breath alcohol content 

(BrAC) of 0mg% and to test negative on a urine drug screen for all drugs of abuse (except cannabis). 

Female participants were required to test negative on a urine pregnancy test. A physical examination was 

performed to ensure medical eligibility to complete an intravenous alcohol administration. Participants 

were between 21 and 45 years of age, current heavy drinkers based on NIAAA recommendations (14+ 

drinks per week for men or 7+ drinks per week for women), non-treatment-seeking for AUD, not 

undergoing significant alcohol withdrawal symptoms, and did not meet diagnostic criteria for any 

substance use disorder other than nicotine or alcohol.  

Alcohol Administration Procedure 

 Alcohol administration was conducted at the UCLA Clinical and Translational Research Center 

(CTRC). Detailed methodology can be found in Bujarski et al., 20188. In brief, upon arrival at the CTRC, 

height, weight, and vital signs were collected and the intravenous (IV) lines were placed by a nurse. 

Participants completed baseline questionnaire assessments. The alcohol infusion lasted 180 minutes and 

study staff were present throughout to monitor the infusion, breathalyze the participant, and administer 

questionnaires, but did not interact with the participant otherwise. To dissociate biobehavioral responses 

to alcohol from cue-induced responses and to enable precise control of BrAC, alcohol was administered 

IV (6% ethanol v/v in saline) using the Computerized Alcohol Infusion System (CAIS10-12). During the 
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alcohol challenge, participants were administered alcohol designed to reach target BrACs of 20, 40, and 

60mg%, each over 15 minutes. BrACs were clamped at each target level while participants completed 

questionnaires (~5 minutes). Immediately after reaching 60mg%, participants began the progressive ratio 

self-administration paradigm. Participants could exert effort (by pressing an electronic button) to obtain 

additional “drinks” through the CAIS system, according to a log-linear progressive ratio schedule. Ratio 

requirements ranged from 20 responses (1st completion) to 3139 responses (20th completion). Each 

“drink” increased BrAC by 7.5 mg% over 2.5 min, followed by a descent of -1 mg%/min11. There was a 

120mg% BrAC safety limit, such that if an infusion of alcohol was predicted (by the CAIS algorithm) to 

increase BrAC beyond this limit, the response button would be temporarily inactivated. Except for the 

first “drink” (i.e., infusion self-administration designed as a “sample” drink), participants were given no 

instructions for the self-administration paradigm other than they could choose to self-administered by 

pressing the button at the required effort levels. After 180 min, the infusion ended and participants were 

monitored and waited for discharge. To ensure all participants were safe to discharge, and to 

disincentivize low-levels of self-administration, all participants were informed that they would remain at 

the CTRC for at least 4 additional hours following alcohol self-administration regardless of their self-

administration profile. 

Measures 

AUD Severity Measures: The Structured Clinical Interview for DSM-5 (SCID; adapted from First 

et al., 201513) assessed for lifetime and current AUD. The Clinical Institute Withdrawal Assessment for 

Alcohol (CIWA-Ar) assessed for alcohol withdrawal symptoms14. A 30-day Timeline Followback 

(TLFB) assessed drinking quantity and frequency over the past month15. Participants also completed the 

Alcohol Dependence Scale (ADS16), the Alcohol Use Disorders Identification Test (AUDIT17), the 

Drinkers Inventory of Consequences (DrINC-2r18), the Penn Alcohol Craving Scale (PACS19), the 

Obsessive Compulsive Drinking Scale (OCDS20), the Drinking Motives Questionnaire – Revised21, the 

UCLA Reward, Relief, Habit Drinking Scale (UCLA RRHDS22), and the Family Tree Questionnaire 
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(FTQ23). A family history of AUD density score was calculated by dividing the number of relatives with 

reported alcohol problems by the total number of first- and second-degree relatives. 

Individual Differences Measures: Cigarette and marijuana use quantity and frequency over the 

past month were assessed using the TLFB. The Fagerstrom Test for Nicotine Dependence assessed for 

nicotine dependence (FTND24). Cannabis problems were assessed using the Cannabis Use Disorders 

Identification Test - Revised (CUDIT-R25). Depressive symptomatology was assessed via the Beck 

Depression Inventory – II (BDI-II26). Anxiety symptomatology was assessed using the State-Trait 

Anxiety Inventory (STAI27). Delay discounting impulsivity was measured using the monetary choice 

questionnaire (MCQ28). The MCQ was scored to calculate k, a constant that reflects the rate of 

discounting; a higher value of k indicates the tendency to prefer smaller, sooner rewards over larger, 

delayed rewards. As k has a strong positive skew, the data was normalized using logarithmic 

transformation. 

Subjective Response to Alcohol (SR) Measures: Participants completed SR assessments at 

baseline, 20, 40, and 60mg% time points during the alcohol challenge (and prior to progressive ratio self-

administration period).  Based on a previous factor analysis, SR was assessed along four dimensions: 

stimulation/hedonia (stimulation), negative affect, sedation/motor intoxication (sedation), and craving29. 

The factor analysis used to derive these four dimensions of SR has been previously described8. 

 

Data Analysis 

 First, we fit a growth curve model predicting BrAC averaged across 5 minute windows, allowing 

for a fourth degree polynomial effect of time, a linear effect of alcohol severity, and for the effect of 

alcohol use severity to interact with the effects of time (see Burjarski et al., 20188 for model selection 

process). All trial specific predictors were allowed to have random effects (i.e., all time predictors were 

allowed to have random effects, but alcohol use severity and interactions which alcohol use severity were 

all fixed effects). The random effects for each participant were extracted and submitted to a K-means 
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cluster analysis initially testing both two and three clusters. By extracting the random effects, and 

submitted them to a cluster analysis, we are able to identify unique trajectories of change during the self-

administration task. All analyses were conducted in R.  

 Two analytic approaches were taken to predict motivation for alcohol self-administration cluster 

membership. First, a “traditional approach” consisting of logistic regression analysis was conducted using 

three a-priori variables based on earlier work7. The predictive variables included in this analysis were: 

delay discounting (log(k)), family history of AUD (positive or negative), and gender. Second, a data 

driven approach consisting of a random forest model was run to identify clinical predictors of whether 

individuals would fall into the motivated or unmotivated alcohol self-administration trajectories.  For the 

random forest the data was split into two parts, training data (n = 33) and testing data (n = 34). Typical 

recommendations for splitting training and testing data suggest 2/3 to training and 1/3 to testing; however, 

for smaller sample sizes a half split tends to result in a better estimate of prediction accuracy30. The 

training data is used to create the model and the testing data is used to evaluate the model’s ability to 

predict observations not used to create the model (out-of-sample prediction). A random forest is an 

aggregate of many classification trees. In this model, we created 500 classification trees, each tree is 

created from a bootstrap sample of the training data, for each node of each tree 6 variables were randomly 

selected from the 32 candidate predictors, and the best candidate is selected and the data is split based on 

the predictor. By limiting the number of candidate predictors for each tree, random forests are able to 

estimate the importance of variables equally, even those variables that are highly correlated with other 

predictors31. The recommended number of variables used for each tree is the square root of the number of 

variables (in this case 5.66), so 6 variables were used. Predictions for each observation in the test dataset 

are generated based on the majority vote from all 500 trees. Variable importance rating and partial 

dependence plots were used to determine the most important variables in the model and the marginal 

effect they have on the outcome. The variables included as candidate predictors were: age, gender, AUD 

severity, current AUD diagnosis, total number of drinking days (30 days), drinks per drinking day (30 

days), AUDIT total score, ADS total score, drinking motive dimensions (enhancement, social, 
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conformity, and coping), dichotomized family history of alcoholism (positive or negative), PACS score, 

RRDS scores for reward, relief, and habit, BDI-II score, STAI score, cigarette smoking days (30 days – 

smokers only), cigarettes per smoking day (30 days – smokers only), cannabis use days (30 days – 

cannabis users only), CUDIT score (cannabis users only), log transformed delayed discounting (log(k)), 

and subjective response measures from the alcohol challenge (peak ratings and time of peak for 

stimulation, sedation, negative affect, and craving). The broad set of variables selected was meant to 

capture plausible predictors while capitalizing on a robust data analytic model that can handle a multitude 

of predictor variables in spite of a moderate sample size. 

 

Results 

K-Means Cluster Analysis 

For the cluster analysis, a silhouette plot indicated that 2 clusters were more optimal than 3.  One 

cluster was characterized by a motivated phenotype (n = 41), such that individuals in this group exhibited 

effort to continue receiving alcohol throughout the self-administration progressive ratio session. The other 

cluster was characterized by an unmotivated phenotype (n = 26), such that individuals in this group did 

not exert increasing amounts of effort to earn alcohol infusions throughout the session and therefore had 

decreasing BrAC during the self-administration paradigm (see Figure 1). The average breakpoint for 

individuals in the motivated cluster was 871.61±368.53 (maximum breakpoint = 1,1775, resulting in a 

BrAC of 117.93mg%). The average breakpoint for individuals in the unmotivated cluster was 

186.08±255.07 (maximum breakpoints = 1,019, resulting in a BrAC of 99.18mg%).  There were no 

significant differences in demographic characteristics or in alcohol use measures between the two self-

administration groups (see Table 1). 
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Figure 1.  BrAC over time during the self-

administration task. Lines with smaller weight 

are observed BrAC curves from each 

individual, colored based on their assigned 

cluster where light blue indicates the 

motivated cluster (Cluster 1) and dark blue 

indicates unmotivated cluster (Cluster 2). The 

two heavily weighted lines indicate the 

representative curve for each cluster, based on 

parameters from the cluster analysis. Model 

was fit using averages over 5 minute periods, resulting in slight differences between groups at onset due 

to group differences in behavior within the first 5 minutes.  

Table 1. Participant Characteristics 

 Motivated (n=41) Unmotivated (n=26) Statistic p-value 

Age 29.88 ± 6.53 27.85 ± 6.68 t = 1.23 0.22 

Gender (M/F) 23/18 13/13 Χ2 = 0.24 0.63 

Ethnicity   Χ2 = 0.62 0.43 

     White, Non-Hispanic 36 21   

     White, Hispanic 5 5   

Education   Χ2 = 2.52 0.77 

     < 12 years 1 0   

     12 years (Highschool) 10 9   

     14 years (Associates) 8 3   

     16 years (College) 16 11   

     18 years (Masters) 5 3   

     20+ years (MD, JD) 1 0   

Income   Χ2 = 5.82 0.67 

     < $15,000 8 7   

     $15,000-$29,999 13 6   

     $30,000-$44,999 5 4   

     $45,000-$59,999 7 3   

     $60,000-$74,999 2 3   

     $75,000-$89,999 1 1   

     $90,000-$104,999 1 2   

     $105,000-$119,999 1 0   

     > $120,000 3 0   

     



Running Head: Human Alcohol Motivation Model 

Alcohol Use     

AUD Current Symptom Count 2.41 ± 1.82 2.46 ± 2.50 t = 0.09 0.93 

CIWA-Ar 1.00 ± 1.16 1.08 ± 1.67 t = 0.22 0.83 

Total Drinks (30 days) 93.20 ± 61.61 96.48 ± 48.56 t = 0.23 0.82 

Drinks per drinking day (30 days) 5.39 ± 2.64 5.16 ± 2.48 t = 0.37 0.72 

ADS  11.80 ± 5.38 10.04 ± 5.54 t = 1.30 0.20 

AUDIT  13.39 ± 5.55 13.50 ± 6.39 t = 0.07 0.94 

OCDS 8.39 ± 5.02 9.00 ± 4.65 t = 0.50 0.62 

PACS 9.68 ± 5.81 9.85 ± 5.92 t = 0.11 0.91 

Family History (Negative/Positive) 20/17 11/13 Χ2 = 0.39 0.53 

Family History Density 0.20 ± 0.27 0.20 ± 0.26 t = 0.02 0.99 

 

Logistic Regression  

 In the logistic regression analysis in which delay discounting (log(k)), family history of AUD, and 

gender were simultaneously entered in the model, only delay discounting (log(k)) was a significant 

predictor of cluster group membership (B = -0.54, SE = 0.23, χ2 = 5.50, p =0.02). Neither gender nor 

presence or absence of family history significantly predicted self-administration phenotype (gender: B = -

0.18, SE = 0.59, χ2 = 0.09, p =0.76; family history: B = 0.21, SE = 0.56, χ2 = 0.14, p =0.71). Results were 

such that more impulsive individuals, characterized by delay discounting response profiles, were more 

likely to fall in the “motivated group.” 

Random Forest Models 

 Using the machine learning approach, two clinical variables emerged as the most reliable 

predictors of cluster membership: craving for alcohol during the alcohol challenge and delay discounting 

((log(k)); see Figure 2 for a representative random forest model).  
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Figure 2. One tree randomly drawn from 

set of 500 trees fit as part of the random 

forest. The first variable splits by gender, 

where women are classified in Cluster 1 

(motivated). Men are split by negative 

affect at individual peak where men lower 

than -1.436 are in Cluster 1 (motivated) and 

those higher than -1.436 are then split by 

delayed discounting. Men higher than -

1.436 on negative affect at individual peak 

who are lower than -4.93 on delayed discounting are classified in Cluster 2 (unmotivated). Those 

remaining who are higher than -4.93 on delayed discounting are then split by Drinking Days, where 

individuals will fewer than 17.5 drinking days are assigned Cluster 1 (motivated) and those with more 

than 17.5 drinking days are assigned Cluster 2 (unmotivated).  

Alcohol craving during the alcohol challenge was predictive of the self-administration profile, such that 

individuals who reported greater alcohol craving during the alcohol challenge phase were more likely to 

be in the motivated alcohol self-administration group. Similarly, delay discounting was predictive of the 

self-administration profile, such that individuals who were more impulsive, (i.e. discounted future 

rewards at a steeper rate), were more likely to be in the motivated self-administration group. As shown in 

Figure 3, partial dependence plots depict the marginal relationship between a predictor and the relative 

probability of being in the motivated vs. the unmotivated cluster. These plots were used to inform our 

interpretation of directionality as well as the linear/non-linear nature of the results. In order to evaluate the 

performance of the model, the model fit with the training data was then used to predict the observations of 

the testing data to estimate ability to predict out-of-sample observations. Out of sample results were 

acceptable, where in the sample of 34 participants, 20 were correctly classified in the motivated cluster 
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and 4 were correctly classified in the unmotivated cluster (70.6%). Whereas 1 participant was incorrectly 

classified in the motivated cluster and 9 were incorrectly classified in the unmotivated cluster (29.4%). 

This classification performs significantly better than chance (χ2 = 4.33, p = 0.037). Notably, the error in 

classification is not symmetric, and the model seems to do a good job of identifying participants in the 

motivated cluster, but is less reliable at classifying participants in the unmotivated cluster.   

Figure 3. Partial dependence plots 

show the marginal relationship 

between a predictor (along the X-

axis) and the relative probability of 

being in Cluster 1 vs Cluster 2 on 

the Y-axis. In particular, positive 

scores indicate higher likelihood of 

belonging to Cluster 1 (motivated) 

and negative scores indicate higher 

likelihood of belonging to Cluster 

2 (unmotivated). For example, for 

individual’s whose peak craving is 

relatively low (around -1) they are 

more likely to be in Cluster 2 

(unmotivated) but with higher peak 

craving levels, individuals are 

more likely to be in Cluster 1 

(motivated). However, this 

relationship does not seem to be 

linear, rather there is a particular threshold which defines the differences between the groups.   
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Discussion 

 This study sought to bridge the gap between preclinical and clinical studies of motivation for 

alcohol seeking by examining predictors of alcohol self-administration phenotypes. First, we identified 

two clusters of alcohol self-administration phenotypes based on observed self-administration in the 

laboratory: motivated and unmotivated. Next, using theory-driven, a-priori predictors, we found that 

delay discounting predicted cluster membership in a logistic regression model. Specifically, individuals 

with steeper delay discounting curves (i.e. more impulsive) were more likely to be classified as motivated 

during alcohol self-administration. Finally, in the random forest models the most reliable predictors of 

alcohol self-administration phenotype were delay discounting impulsivity and craving for alcohol during 

an alcohol challenge.  

 Notably, both the theory-driven and the data-driven methods identified delay discounting 

impulsivity as a predictor of alcohol self-administration phenotype. In both methods, individuals who 

tended to choose smaller, sooner rewards over larger, later rewards were more likely to be classified as 

motivated for alcohol seeking. Delay discounting was previously observed as a predictor of laboratory 

alcohol consumption and was predictive of binge alcohol consumption7,32. Delay discounting impulsivity 

has been identified as a candidate behavioral marker of addiction, as it is increased in individuals with 

addictive disorders and can identify individuals at risk for addictive disorders33. Intriguingly, delay 

discounting was also found to be the most robust classifier in a classification tree analysis to distinguish 

alcohol and stimulant users from controls34. These results fit well with the recent reinforcer pathology 

theory, which highlights the interaction between excessive preference for the drug over other rewards and 

excessive preference for immediate rewards35. In the present study, individuals who were motivated to 

seek alcohol choose to work for this preferred reward over the more relaxing choice of not engaging in 

effort and showed a preference for smaller, sooner rewards. The reinforcer pathology theory predicts that 

individuals who demonstrate both a high demand for their preferred drug as well as a high preference for 

immediate rewards are at the highest risk to initiate substance use.  
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Importantly, delay discounting may be targeted and modified through behavioral interventions. 

For example contingency management for cigarette smoking was found to decrease delay reward 

discounting36. Furthermore, novel interventions such as episodic future thinking and altering temporal 

attention were also found to dampen delay discounting37-39. In individuals with AUD, training in episodic 

future thinking, where individuals are required to vividly experience a realistic event in the future, 

increased the value of future monetary rewards and decreased hypothetical initial consumption of 

alcoholic drinks, particularly in individuals with lower AUDIT scores40. In the current study, all 

participants were non-treatment-seeking and the majority of participants had comparable AUDIT scores, 

indicating that this training may be particularly valuable for improving delay discounting and future 

drinking outcomes in individuals with the motivated alcohol-self administration phenotype. 

 The data-driven, machine learning, approach also identified alcohol craving during the alcohol 

challenge as a predictor of alcohol self-administration. Specifically, individuals who reported higher peak 

ratings of craving for alcohol during the alcohol challenge were more likely to be classified as motivated 

for alcohol seeking during the progressive ratio self-administration session. This result extends our 

previous work which identified alcohol craving as a more proximal predictor of alcohol self-

administration than other subjective responses, including stimulation and sedation41. In the laboratory, 

naltrexone, an FDA approved treatment for AUD, reduces alcohol self-administration and alcohol 

craving42,43, indicating that this behavioral marker of alcohol seeking may also be targeted through 

pharmacotherapy.  In essence, the convergence of findings across two distinct and robust analytic 

methods along with validation within the broader literature suggests that this translational paradigm may 

be useful in advancing AUD research.   

 Machine learning methods are playing an increasingly important role in psychological science, in 

particular, within the area of clinical psychology. Research focused on clinical outcomes and prevention 

cannot just prioritize creating models which fit well with sample data, but also models which do a good 

job of predicting future observations. Machine learning models tend to prioritize the ability to predict 
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future outcomes over creating perfectly fitting models for the data at hand. This results in models which 

are more generalizable to future observations. For example, Leach et al., 201644 used a similar approach 

to random forests, decision trees, to identify important environmental characteristics which contribute to 

cardiovascular disease in African American women. This example brings about another advantage of 

machine learning approaches, which is that many are well suited for selecting among a large set of 

candidate predictors45. In the current study, due to small sample size, the number of predictors which were 

reasonable to use in the logistic regression was very limited; however, with the random forest analysis we 

were able to include 32 predictors. This is because random forests choose which predictors to include in 

the model, whereas linear and logistic regression approaches always include all predictors in the model, 

taking up available degrees of freedom. However, with these models comes a particular limitation that 

will be important to acknowledge in clinical frameworks: a lack of hypothesis testing or thresholds to 

determine which predictors are “significant” and which are not. In this study, we focused on the top two 

predictors, as these were consistent across multiple runs of the model and showed the greatest variable 

importance. However, even in models where no predictors predict above chance, random forest will 

always rank order variables based on importance. By combining traditional and machine learning 

approaches, researchers can benefit from the exploratory nature of the machine learning models, while 

still estimating inferential tests using traditional models. Coughlin and colleagues used machine learning 

approaches to predict smoking cessation status following psychosocial treatment46. Notably, delay 

discounting impulsivity was the best predictor of treatment response, further highlighting the key role of 

delay discounting in addiction processes. As precision medicine becomes increasingly common in both 

clinical psychology settings and other medical settings more broadly, machine learning approaches can be 

utilized to comb through large sets of candidate moderators. This means that based on individual’s 

characteristics we can make precise predictions about what the best possible treatment would be for each 

individual. Machine learning approaches have only recently been found within psychological research47; 

however, their potential value to clinical research is very high, and our study demonstrates one of the 

potential advantages of using machine learning for improving our understanding of clinical outcomes.  
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 The present study should be interpreted in light of its strengths and limitations. Strengths include 

the use of traditional and data-driven approaches and the use of a novel paradigm for alcohol self-

administration in humans. One limitation is that the self-administration paradigm occurred directly 

following the alcohol challenge, and thus all participants in the study were already experiencing the 

effects of alcohol prior to beginning the alcohol progressive ratio task. It is unknown if the pre-self-

administration alcohol challenge altered performance on the progressive ratio task and future studies 

should explore this issue. Relatedly, due to safety concerns, BrAC in the present study was capped at 

120mg%, which may have limited self-administration as individuals were prevented from pressing for 

alcohol when they would go over the safety limit. Moreover, this study did not include a placebo infusion, 

which limits our ability to make causal conclusions about motivation to seek alcohol in this paradigm. 

Additionally, this study was cross-sectional in design and is therefore unable to determine if the alcohol 

self-administration phenotypes identified truly reflect risk factors for the development of AUD or alcohol-

related problems. Longitudinal studies are needed to confirm that these patterns are vulnerability factors. 

Further, this study employed an intravenous alcohol administration paradigm, which may have limited 

ecological validity for real-world alcohol consumption. However, a recent prospective study found that 

IV alcohol self-administration was predictive of real-world heavy drinking48. Finally, this study had a 

relatively small sample size, which may have limited our ability to detect group differences in the a priori 

variables in the traditional statistical analyses. 

 In conclusion, the present study leveraged a translational experimental paradigm of progressive 

ratio self-administration in combination with theory- and data-driven methods and found that both 

delayed reward discounting and alcohol craving during an alcohol challenge, predicted motivation 

towards alcohol self-administration. Based on this robust combination of a translational paradigm for 

alcohol-seeking with traditional and novel analytic approaches, it appears that additional application of 

this model to AUD translational science and treatment development are warranted. 
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